Skip to main content
Log in

Increasing the Electrical Strength of the Accelerating Gap in an Electron Source with a Plasma Cathode

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The stability of operation of an electron source with a plasma cathode with grid (layer) stabilization of the emission-plasma boundary and a plasma anode, whose boundary is open, is investigated. An increase in the stability of the source operation is achieved by reducing the reverse gas and ion flows, when the electron-beam trajectory changes due to the placement of the emission electrode of the electron source and a target in different planes. Calorimetric measurements of the radial distribution of the energy density of the generated electron beam were carried out under the conditions of its deflection and in the “straight” transport mode, when the collector target is on the line of sight relative to the emission electrode. It has been experimentally shown that the stability of the electron-source operation increases by several times when the beam is deflected, thus making it possible to expand the range of the beam parameters and opening up new possibilities for using such an electron source for scientific and technological purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bugaev, S.P., Kreindel’, Yu.E., and Shchanin, P.M., Elektronnye puchki bol’shogo secheniya (Electron Beams with Large Cross-Sections), Moscow: Energoatomizdat, 1984.

  2. Oks, E.M., Istochniki elektronov s plazmennym katodom: fizika, tekhnika, primeneniya (Electron Sources with Plasma Cathodes: Physics, Technology, Application), Tomsk: Izd. Nauchno-Tekhnicheskoi Literatury, 2005.

  3. Gromov, V.E., Yurev, A.B., Morozov, K.V., and Ivanov, Yu.F., The Microstructure of Quenched Rails, Cambridge: Cambridge Int. Science Publ., 2016, p. 157

    Google Scholar 

  4. Astrelin, V.T., Kandaurov, I.V., Vorobyov, M.S., Koval’, N.N., Kurkuchekov, V.V., Sulakshin, S.A., and Trunev, Yu.A., Vacuum, 2017, vol. 143, p. 495. https://doi.org/10.1016/j.vacuum.2017.03.025

    Article  ADS  Google Scholar 

  5. Rotshtein, V., Ivanov, Yu., and Markov, A., in Materials Surface Processing by Directed Energy Techniques, Pauleau, Y., Ed., Elsevier, 2006, chap. 6.

    Google Scholar 

  6. Ivanov, Yu.F. and Koval’, N.N., in Struktura i svoistva perspektivnykh metallicheskikh materialov (Structure and Properties of Promising Metal Materials), Potekaev, A.I., Ed., Tomsk: Izd. Nauchno-Tekhnicheskoi Literatury, 2007, chap. 13.

  7. Devyatkov, V.N., Koval, N.N., Schanin, P.M., Grigoryev, V.P., and Koval, T.B., Laser Part. Beams, 2003, vol. 21, no. 2, p. 243. https://doi.org/10.1017/S026303460321212X

    Article  ADS  Google Scholar 

  8. Ozyr, G.E., Proskurovsky, D.I., and Karlik, K.V., Proc. 7th Int. Conference on Modification of Materials with Particle Beams and Plasma Flows, 2004, Tomsk, July 25–30 2004, p. 20.

  9. Kadyrzhanov, K.K., Komarov, F.F., Pogrebnyak, A.D., Rusakov, V.S., and Turkebaev, T.E., Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov (Ion-Beam and Ion-Plasma Modification of Materials), Moscow: Moscow State Univ., 2005.

  10. Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov (Promising Radiation-Beam Technologies for Materials Processing), Moscow: Kruglyi Stol, 2001.

  11. Remnev, G.E., Isakov, I.F., Opekunov, M.S., Matvienko, V.M., Ryzhkov, V.A., Struts, V.K., Grushin, I.I., Zakoutayev, A.N., Potyomkin, A.V., Tarbokov, V.A., Pushkaryov, A.N., Kutuzov, V.L., and Ovsyanni-kov, M.Yu., Surf. Coat. Technol., 1999, vol. 114, nos. 2–3, p. 206. https://doi.org/10.1016/S0257-8972(99)00058-4

    Article  Google Scholar 

  12. Tyurin, Yu.N. and Zhadkevich, M.L., Plazmennye uprochnyayushchie tekhnologii (Plasma Strengthening Technologies), Kyiv: Naukova Dumka, 2008.

  13. Uglov, V.V., Anishchik, V.M., Stal’moshenok, E.K., Cherenda, N.N., Astashinskii, V.V., Rumyantseva, I.N., Askerko, V.V., and Kuzmitskii, M.M., Fiz. Khim. Obrab. Mater., 2004, no. 5, p. 44.

  14. Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Stalmashonak, A.K., Kononov, A.G., Petuhov, Yu.A., Astashynski, V.M., and Kuzmitski, A.M., High Temp. Mater. Processes, 2007, vol. 11, no. 3, p. 383. https://doi.org/10.1615/HighTempMatProc.v11.i3.60

    Article  Google Scholar 

  15. Zharinov, A.V., Kovalenko, Yu.A., Roganov, I.S., and Teryukanov, P.M., Zh. Tekh. Fiz., 1986, vol. 56, no. 1, p. 66.

    Google Scholar 

  16. Zharinov, A.V., Kovalenko, Yu.A., Roganov, I.S., and Teryukanov, P.M., Zh. Tekh. Fiz., 1986, vol. 56, no. 4, p. 687.

    Google Scholar 

  17. Koval, N.N., Oks, E.M., Protasov, Yu.S., and Semashko, N.N., Emissionnaya elektronika (Emission Electronics), Moscow: Bauman Moscow State Technical Univ., 2009.

  18. Burdovitsin, V.A., Kuzemchenko, M.N., and Oks, E.M., Tech. Phys., 2002, vol. 47, no. 7, p. 926.

    Article  Google Scholar 

  19. Batrakov, A.V., Emissionnaya elektronika (Emission Electronics), Tomsk: Tomsk Polytechnic Univ., 2008.

  20. Grigor’ev, S.V., Astrelin, V.T., Kandaurov, I.V., Koval, N.N., Moskvin, P.V., and Teresov, A.D., Plazmennaya emissionnaya elektronika, Trudy 4-ogo mezhdunarodnogo Kreindelevskogo seminara (Proc. 4th Int. Kreindel’ Seminar on Plasma Emission Electronics), Semenov, A.P., Ed., Ulan-Ude: Buryatia Scientific Center of the Siberian Branch Russ. Acad. Sci., 2012, p. 81.

    Google Scholar 

  21. Vorob’ev, M.S., Grigor’ev, S.V., Moskvin, P.V., and Sulakshin, S.A., Izv. Vyssh. Uchebn. Zaved., Fiz., 2014, vol. 57, no. 11-3, p. 199.

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-79-10015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shin.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, V.I., Moskvin, P.V., Vorobyev, M.S. et al. Increasing the Electrical Strength of the Accelerating Gap in an Electron Source with a Plasma Cathode. Instrum Exp Tech 64, 234–240 (2021). https://doi.org/10.1134/S0020441221020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221020159

Navigation