Skip to main content
Log in

A Monte Carlo Model of the Neutron Detector Based on Lithium-Glass Scintillator

  • NUCLEAR EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A Monte Carlo model of the thermal-neutron scintillation detector based on NE 912 lithium glass has been created and verified. The simulation was validated by comparing its result to experimental data from a prototype detector exposed to thermal-neutron and γ-ray beams. The light yield in the scintillator for a captured thermal neutron, the quenching factor, and the decay times of the scintillator were determined. The accuracy in reproducing the pulse shapes obtained in the experiment is sufficient to allow analysis of experimental data and estimation of the efficiency of n/γ discrimination techniques. Based on the simulation, it is possible to develop detector models with a low γ-ray sensitivity using heterogeneous composite scintillators with various geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kuzmin, E.S., Balagurov, A.M., Bokuchava, G.D., Zhuk, V.V., and Kudryashev, V.A., J. Neutron Res., 2002, vol. 10, p. 31. https://doi.org/10.1080/10238160290027748

    Article  Google Scholar 

  2. Combes, C.M., Dorenbos, P., Van Eijk, C.W.E., Krämer, K.W., and Güdel, H.U., J. Lumin., 1999, vol. 82, no. 4, p. 299.

    Article  Google Scholar 

  3. Ianakiev, K.D., Hehlen, M.P., Swinhoe, M.T., Favalli, A., Iliev, M.L., Lin, T.C., Bennett, B.L., and Barker, M.T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 784, p. 189. https://doi.org/10.1016/j.nima.2014.10.073

    Article  Google Scholar 

  4. Mayer, M., Nattress, J., Trivelpiece, C., and Jovanovic, I., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 784, p. 168. https://doi.org/10.1016/j.nima.2014.09

    Article  Google Scholar 

  5. Rich, G.C., Kazkaz, K., Martinez, H.P., and Gushue, T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 794, p. 15. https://doi.org/10.1016/J.NIMA.2015.05.004

    Article  Google Scholar 

  6. Zaitseva, N., Glenn, A., Martinez, H.P., Carman, L., Pawełczak, I., Faust, M., and Payne, S., Nucl. Instrum. Methods Phys. Res., Sect. A, 2013, vol. 729, p. 747. https://doi.org/10.1016/j.nima.2013.08.048

    Article  Google Scholar 

  7. Wang, C.L. and Riedel, R., Rev. Sci. Instrum., 2016, vol. 87, p. 013301. https://doi.org/10.1063/1.4939821

    Article  ADS  Google Scholar 

  8. Bokuchava, G., Crystals, 2018, vol. 8, p. 318. https://doi.org/10.3390/cryst8080318

    Article  Google Scholar 

  9. Balagurov, A., Balagurov, D., Bobrikov, I., Bogdzel, A., Drozdov, V., Kirilov, A., Kruglov, V., Kulikov, S., Murashkevich, S., Prikhodko, V., Shvetsov, V., Simkin, V., Sirotin, A., Zernin, N., and Zhuravlev, V., Nucl. Instrum. Methods Phys. Res., Sect. B, 2018, vol. 436, p. 263.

    Google Scholar 

  10. Bellamy, E.H., Bellettini, G., Budagov, J., Cervelli, F., Chirikov-Zorin, I.E., Incagli, M., Lucchesi, D., Pagliarone, C.E., Tokár, S., and Zetti, F., Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, vol. 339, p. 468. https://doi.org/10.1016/0168-9002(94)90183-X

    Article  Google Scholar 

  11. Bellamy, E.H., Belletini, G., Budagov, J., Cervelli, F., Chiricov-Zorin, I.E., Kovtun, V., Incagli, M., Lucchesi, D., Pagliarone, C.E., Pukhov, J., Seminozhenko, V.P., Senchishin, V.S., Tokár, S., Verezub, N.A., Zljubovsky, I.I., and Zetti, F., Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, vol. 334, p. 484. https://doi.org/10.1016/0168-9002(94)90228-3

    Article  Google Scholar 

  12. Chirikov-Zorin, I.E., Cand. Sci. (Phys.-Math.) Dissertation, Dubna: Joint Institute for Nuclear Research, 2014. https://search.rsl.ru/ru/record/01007866157.

    Google Scholar 

  13. Schroder, J., Kudryashev, V.A., Keuter, J.M., Priesmeyer, H.G., Larsen, J., and Tiitta, A., J. Neutron Res., 1994, vol. 2, no. 4, p. 129. https://doi.org/10.1080/10238169408200025

    Article  Google Scholar 

  14. Fairley, E.J. and Spowart, A.R., Nucl. Instrum. Methods, 1978, vol. 150, p. 159.

    Article  ADS  Google Scholar 

  15. Marrone, S., Cano-Ott, D., Colonna, N., Domingo, C., Gramegna, F., Gonzalez, E.M., Gunsing, F., Heil, M., Kappeler, F., Mastinu, P.F., Milazzo, P.M., Papaevangelou, T., Pavlopoulos, P., Plag, R., Reifarth, R., Tagliente, G., Tain, J.L., and Wisshak, K., Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 490, p. 299. https://doi.org/10.1016/S0168-9002(02)01063-X

    Article  Google Scholar 

  16. Geant4, A Simulation Toolkit. https://geant4.web.cern.ch/support/download.

  17. Dalton, A.W., Nucl. Instrum. Methods Phys. Res., Sect. A, 1987, vol. 254, p. 361.

    Google Scholar 

  18. Haoyang Xing, Xunzhen Yu, Jingjun Zhu, Li Wang, Jinglu Ma, Shukui Liu, Linwei Li, Liejian Chen, Changjian Tang, and Qian Yue, Nucl. Instrum. Methods Phys. Res., Sect. A, 2014, vol. 768, p. 1. https://doi.org/10.1016/J.NIMA.2014.08.049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kuzmin.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, E.S., Bokuchava, G.D., Zimin, I.Y. et al. A Monte Carlo Model of the Neutron Detector Based on Lithium-Glass Scintillator. Instrum Exp Tech 64, 195–201 (2021). https://doi.org/10.1134/S0020441221010279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221010279

Navigation