Skip to main content
Log in

Inspection Probes of a Ferromagnetic Resonance Scanning Spectrometer

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The design of inspection probes for a scanning ferromagnetic resonance spectrometer, which are designed for recording the absorption spectra of electromagnetic energy by local areas of thin magnetic films, is described. The degree of locality is determined by the diameter of the measuring hole of the probe in the range of 0.1–1.0 mm. The sensitivity of the device is significantly increased due to the miniaturization of the heterogeneous measuring resonator and its comparatively high Q factor. A set of replaceable probes makes it possible to cover the frequency range of 0.1–6.0 GHz, the signal-to-noise ratio for a probe with a hole diameter of 0.8 mm, which was measured on a permalloy film with a thickness of 5 nm, is at least 20 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Soohoo, R.F., Magnetic Thin Films, New York: Harper and Row, 1965.

    Google Scholar 

  2. Karpenkov, S.Kh., Tonkoplenochnye magnitnye preobrazovateli (Thin-Film Magnetic Transducers), Moscow: Radio i Svyaz’, 1985.

  3. Babitskii, A.N., Blinnikov, E.P., Vladimirov, A.G., Gitarts, Ya.I., Polyakov, V.V., and Frolov, G.I., Geofiz. Appar., 1991, no. 94, p. 21.

  4. Babitskii, A.N., Belyaev, B.A., Boev, N.M., Skomorokhov, G.V., Izotov, A.V., and Galeev, R.G., Instrum. Exp. Tech., 2016, vol. 59, no. 3, pp. 425–432. https://doi.org/10.1134/S0020441216030131

    Article  Google Scholar 

  5. Zubkov, V.I. and Shcheglov, V.I., J. Commun. Technol. Electron., 2011, vol. 56, no. 7, p. 853. https://doi.org/10.1134/S1064226911070151

    Article  Google Scholar 

  6. Ustinov, A.B., Nikitin, A.A., and Kalinikos, B.A., Tech. Phys., 2015, vol. 60, no. 9, p. 1397. https://doi.org/10.1134/S1063784215090224

    Article  Google Scholar 

  7. Fetisov, Yu.K. and Sigov, A.S., RENSIT Radioelektron., Nanosist., Inf. Tehnol., 2018, vol. 10, no. 3, p. 343. https://doi.org/10.17725/rensit.2018.10.343

    Article  Google Scholar 

  8. Belyaev, B.A., Izotov, A.V., Leksikov, An.A., Solov’ev, P.N., and Tyurnev, V.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 2020, vol. 63, no. 9, p. 7.

    Google Scholar 

  9. Hamida, A.B., Sievers, S., Pierz, K., and Schumacher, H.W., J. Appl. Phys., 2013, vol. 114, p. 123704-1. https://doi.org/10.1063/1.4823740

    Article  ADS  Google Scholar 

  10. Tamaru, S., Tsunegi, S., Kubota, H., and Yuasa, S., Rev. Sci. Instrum., 2018, vol. 89, p. 053901-1. https://doi.org/10.1063/1.5022762

    Article  ADS  Google Scholar 

  11. Frait, Z., Czech. J. Phys., 1959, vol. 9, p. 403.

    Article  ADS  Google Scholar 

  12. Soohoo, R.F., J. Appl. Phys., 1962, vol. 33, p. 1276.

    Article  ADS  Google Scholar 

  13. Belyaev, B.A., Leksikov, A.A., Makievskii, I.Ya., and Tyurnev, V.V., Instrum. Exp. Tech., 1997, vol. 40, no. 3, pp. 390–394.

    Google Scholar 

  14. Belyaev, B.A., Izotov, A.V., and Leksikov, A.A., IEEE Sens. J., 2005, vol. 5, no. 2, p. 260. https://doi.org/10.1109/JSEN.2004.842293

    Article  ADS  Google Scholar 

  15. Belyaev, B.A., Izotov, A.V., and Kiparisov, S.Ya., JETP Lett., 2001, vol. 74, no. 4, pp. 226–230.

    Article  ADS  Google Scholar 

  16. Belyaev, B.A. and Izotov, A.V., JETP Lett., 2002, vol. 76, no. 3, pp. 174–179.

    Article  ADS  Google Scholar 

  17. Belyaev, B.A., Izotov, A.V., Skomorokhov, G.V., and Solovev, P.N., Mater. Res. Express, 2019, vol. 6, p. 116105-1. https://doi.org/10.1088/2053-1591/ab4456

    Article  ADS  Google Scholar 

  18. Belyaev, B.A., Boev, N.M., Izotov, A.V., Skomorokhov, G.V., and Solov’ev, P.N., Izv. Vyssh. Uchebn. Zaved., Fiz., 2020, vol. 63, no. 1, p. 17. https://doi.org/10.17223/00213411/63/1/17

    Article  Google Scholar 

  19. Belyaev, B.A., Tyurnev, V.V., Izotov, A.V., and Leksikov, An.A., Phys. Solid State, 2016, vol. 58, no. 1, pp. 55–61. https://doi.org/10.1134/S1063783416010054

    Article  Google Scholar 

  20. Belyaev, B.A. and Izotov, A.V., JETP Lett., 2016, vol. 103, no. 1, pp. 41–45. https://doi.org/10.1134/S0021364016010033

    Article  ADS  Google Scholar 

  21. Belyaev, B.A., Izotov, A.V., Solovev, P.N., and Boev, N.M., Phys. Status Solidi RRL, 2020, vol. 14, p. 1900467-1. https://doi.org/10.1002/pssr.201900467

    Article  Google Scholar 

  22. Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions, Oxford: Clarendon Press, 1970.

    Google Scholar 

  23. Belyaev, B.A., Boev, N.M., and Izotov, A.V., RF Patent 2691996, Byull. Izobret., 2019, no. 17.

  24. Belyaev, B.A., Izotov, A.V., Kiparisov, S.Ya., and Skomorokhov, G.V., Phys. Solid State, 2008, vol. 50, no. 4, pp. 676–683.

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation as part of a complex project on the development of high-technology production facilities (agreement no. 075-11-2019-054, November 22, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Boev, N.M., Gorchakovsky, A.A. et al. Inspection Probes of a Ferromagnetic Resonance Scanning Spectrometer. Instrum Exp Tech 64, 277–284 (2021). https://doi.org/10.1134/S0020441221010218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221010218

Navigation