Skip to main content
Log in

Microsecond Long Pulse Generation of Nd:YAG Laser Using Rayleigh PFN Circuit

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A free-running mode operation of a Nd:YAG laser allowed to obtain long laser pulses varying from tens to hundreds of microseconds. The laser rod was pumped by a xenon flash-lamp that has been electrically supplied by a pulsed current obtained using a PFN (Pulse forming network) circuit. The output laser pulse width was increased by increasing the number of the PFN meshes. For a PFN circuit with five meshes, the obtained laser pulse widths were 436 and 700 µs depending on the single-mesh current width. The generation of long laser pulses allowed obtaining multipulse with different laser pulse lengths thanks to the use of an insulated gate bipolar transistor (IGBT) instead of a silicon controlled rectifier (SCR) to control the capacitor discharge time into the flash-lamp. In this mode of operation, the number of pulses and the pulse width could be adjusted. The obtained laser pulse widths were of 100 and 25 µs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Craig, L.M. and Alster, T.S., Dermatol. Surg., 2013, vol. 39, no. 8, p. 1137. https://doi.org/10.1111/dsu.12129

    Article  Google Scholar 

  2. Chan, H.H. and Kono, T., Skin Ther. Lett., 2004, vol. 9, no. 8, p. 5.

    Google Scholar 

  3. Kozarev, J., J. Laser Health Acad., 2011, vol. 2011, no. 1, p. 33.

    Google Scholar 

  4. Blumenkranz, M.S., Am. J. Ophthalmol., 2014, vol. 158, no. 1, p. 12. https://doi.org/10.1016/j.ajo.2014.03.013

    Article  Google Scholar 

  5. Burri, C., Hutfilz, A., Grimm, L., Arnold, P., Ebneter, A., Brinkmann, R., Theisen-Kunde, D., Považay, B., and Meieet, Ch., Proc. SPIE/OSA European Conference on Biomedical Optics, München, 2019, p. 11079_2. https://doi.org/10.1117/12.2526720.

  6. Choubey, A., Vishwakarma, S.C., Vachhani, D.M., Singh, R., Misra, P., Jain, R.K., Arya, R., Upadhyaya, B.N., and Oak, S.M., Opt. Lasers Eng., 2014, vol. 62, p. 69. https://doi.org/10.1016/j.optlaseng.2014.04.012

    Article  Google Scholar 

  7. Hong, J.H., Song, K.Y., Chung, H.J., Jung, J.H., Kim, W.Y., Kang, U., and Kim, H.J., Opt. Laser Technol., 2002, vol. 34, no. 3 p. 203. https://doi.org/10.1016/S0030-3992(01)00111-6

    Article  ADS  Google Scholar 

  8. Lee, Y.S., Chung, H.J., Joung, J.H., Kim, E.J., Kim, H.J., Opt. Laser Technol., 2004, vol. 36, no. 1, p. 57. https://doi.org/10.1016/S0030-3992(03)00133-6

    Article  ADS  Google Scholar 

  9. Koechner, W., Solid-State Laser Engineering, New York: Springer, 2013.

    MATH  Google Scholar 

  10. Glasoe, G.N. and Lebacqz, J.V., Pulse Generators, New York: McGraw-Hill, 1948.

    Google Scholar 

  11. Li, D., Wu, W., Chen, B., Gou, Z., Zhao, P., and Wang, G., Lasers Med. Sci., 2020, vol. 35, p. 1589. https://doi.org/10.1007/s10103-020-03007-0

    Article  Google Scholar 

  12. Togatov, V.V. and Gnatyuk, P.A., Instrum. Exp. Tech., 2002, vol. 45, no 1, p. 87. https://doi.org/10.1023/A:1014512612418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Almabouada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almabouada, F. Microsecond Long Pulse Generation of Nd:YAG Laser Using Rayleigh PFN Circuit. Instrum Exp Tech 64, 248–253 (2021). https://doi.org/10.1134/S0020441221010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221010036

Navigation