Skip to main content
Log in

The Architecture of a 32 × 32 Hybrid Matrix Format High-Speed Detector for Spectral Range Vacuum Ultraviolet–Hard X-Rays

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An improved architecture of a hybrid matrix detector that operates in the vacuum ultraviolet-hard X-ray range in the 32 × 32 format for high-speed registration of the radiation profile of high-temperature plasma with photon energies of (Eph = 1–10 000 eV) is described. The detector includes silicon photodiodes, preamplifiers, and a system for digitizing and transmitting information with a frame time of 2 μs and continuous recording of up to 4 s. This work took the experience of using the previous model of a 16 × 16 hybrid matrix detector in the T-11M and Globus-M tokamaks into account. The results of absolute calibrations of the photodiode sensitivity in the 1–60 000 eV energy range are presented. A functioning prototype of a 1 × 32 submodule is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. ISO no. 21348: Definitions of Solar Irradiance Spectral Categories.

  2. Bush, C.E., Stratton, B.C., Robinson, J., Zakharov, L.E., Fredrickson, E.D., Stutman, D., and Tritz, K., Rev. Sci. Instrum., 2008, vol. 79, p. 10E928-1. https://doi.org/10.1063/1.2968219

  3. Yu, J.H., Van Zeeland, M.A., Chu, M.S., Izzo, V.A., and La Haye, R.J., Phys. Plasmas, 2009, vol. 16, p. 056114-1. https://doi.org/10.1063/1.3118626

    Article  ADS  Google Scholar 

  4. Ding, Y.H., Zhuang, G., Zhang, X.Q., Zhang, J., Ba, W.G., Wang, Z.J., and Pan, Y., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 606, p. 743. https://doi.org/10.1016/j.nima.2009.05.012

    Article  Google Scholar 

  5. Wang, Z.J., Ming, T.F., Gao, X., Du, X.D., and Ohdachi, S., Rev. Sci. Instrum., 2016, vol. 87, p. 11E307-1. https://doi.org/10.1063/1.4959951

  6. Odstrcil, T., Odstrcil, M., Grover, O., Svoboda, V., Ďuran, I., and Mlynář J., Rev. Sci. Instrum., 2012, vol. 83, p. 10E505-1. https://doi.org/10.1063/1.4731003

  7. Shafer, M.W., Battaglia, D.J., Unterberg, E.A., Evans, T.E., Hillis, D.L., and Maingi, R., Rev. Sci. Instrum., 2010, vol. 81, p. 10E534-1. https://doi.org/10.1063/1.3481166

  8. Tal, B., Labit, B., Nagy, D., Chavan, R., Duval, B., and Veres, G., Rev. Sci. Instrum., 2013, vol. 84, p. 123508-1. https://doi.org/10.1063/1.4848155

    Article  ADS  Google Scholar 

  9. Bernert, M., Eich, T., Burckhart, A., Fuchs, J.C., Giannone, L., Kallenbach, A., McDermott, R.M., and Sieglin, B., Rev. Sci. Instrum., 2014, vol. 85, p. 033503-1. https://doi.org/10.1063/1.4867662

    Article  ADS  Google Scholar 

  10. Alekseev, A.G., Belov, A.M., and Zabrodskii, V.V., Instrum. Exp. Tech., 2010, vol. 53, no. 2, pp. 209–212. https://doi.org/10.1134/S0020441210020107

    Article  Google Scholar 

  11. Sladkomedova, A.D., Alekseev, A.G., Bakharev, N.N., Gusev, V.K., Khromov, N.A., Kurskiev, G.S., Mina-ev, V.B., Patrov, M.I., Petrov, Yu.V., Sakharov, N.V., Shchegolev, P.B., Solokha, V.V., Telnova, A.Yu., Tolstyakov, S.Yu., and Zabrodsky, V.V., Rev. Sci. Instrum., 2018, vol. 89, p. 083509-1. https://doi.org/10.1063/1.5039801

    Article  ADS  Google Scholar 

  12. Sladkomedova, A.D., Voronin, A.N., Alekseev, A.G., Gusev, V.K., Kurskiev, G.S., Petrov, Yu.V., Sakha-rov, N.V., Tolstyakov, S.Yu., and Zabrodsky, V.V., Phys. Scr., 2018, vol. 93, p. 105601. https://doi.org..https://doi.org/10.1088/1402-4896/aadb85

    Article  ADS  Google Scholar 

  13. Aruev, P.N., Kolokolnikov, Yu.M., Kovalenko, N.V., Legkodymov, A.A., Lyakh, V.V., Nikolenko, A.D., Pindyurin, V.F., Sukhanov, V.L., and Zabrodsky, V.V., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, p. 58. https://doi.org/10.1134/S1027451010010167

    Article  Google Scholar 

  14. Scholze, F., Klein, R., and Müller, R., Metrologia, 2006, vol. 43, p. 6. https://doi.org/10.1088/0026-1394/43/2/S02

    Article  ADS  Google Scholar 

  15. Goldberg, Yu.A., Zabrodsky, V.V., Obolensky, O.I., Petelina, T.V., and Suhanov, V.L., Semiconductors, 1999, vol. 33, no. 3, p. 343. https://doi.org/10.1134/1.1187691

    Article  ADS  Google Scholar 

  16. Gottwald, A., Kroth, U., Richter, M., Schoppe, H., and Ulm, G., Meas. Sci. Technol., 2010, vol. 21, p. 125101. https://doi.org/10.1088/0957-0233/21/12/125101

    Article  ADS  Google Scholar 

  17. Krumrey, M. and Ulm, G., Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vols. 467–468, p. 1175. https://doi.org/10.1016/S0168-9002(01)00598-8

    Article  Google Scholar 

  18. Scholze, F., Tümmler, J., and Ulm, G., Metrologia, 2003, vol. 40, p. 224. https://doi.org/10.1088/0026-1394/40/1/352

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. N. Aruev or A. V. Nikolaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aruev, P.N., Bobashev, S.V., Krassilchtchikov, A.M. et al. The Architecture of a 32 × 32 Hybrid Matrix Format High-Speed Detector for Spectral Range Vacuum Ultraviolet–Hard X-Rays. Instrum Exp Tech 64, 93–96 (2021). https://doi.org/10.1134/S0020441220060147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220060147

Navigation