Skip to main content
Log in

An Experimental Setup for Acoustic Research of the Components of Fiber-Optic Measuring Systems

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of theoretical calculations and experimental studies of the characteristics of an acoustic test signal when using an acoustic enclosure of the “open-shield” type are presented. The enrichment of the test acoustic signal spectrum due to the use of the developed enclosure was up to +30 dB in the frequency range of up to 500 Hz and from +4 to +20 dB in the frequency range of 1500–5000 Hz in comparison with the loudspeaker without an enclosure. The effect of room characteristics on the acoustic signal at the measurement point was studied and a method for compensation of this influence was proposed. As a result of applying it, the nonuniformity of the amplitude–frequency response of the acoustic signal at the measurement point decreased from 7 to 1.5 dB and the slopes of its spectral characteristic were eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fiber Optic Sensors: An Introduction for Engineers and Scientists, Udd, E. and Spillman, W.B., Jr., Eds., Hoboken, NJ: Wiley, 2011.

  2. Okosi, T., Okamoto, K., Otsu, M., Nisikhara, Kh., Kyuma, K., and Khatate, K., Volokonno-opticheskie datchiki (Fiber-Optic Sensors), Leningrad: Energoatomizdat, 1990, vol. 254, p. 1.

  3. Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, Cusano, A., Cutolo, A., and Albert, J., Eds., Sharjah: Bentham Science Publ., 2011.

    Google Scholar 

  4. Hocker, G.B., Appl. Opt., 1979, vol. 18, no. 9, p. 1445. https://doi.org/10.1364/AO.18.001445

    Article  ADS  Google Scholar 

  5. McMahon, G.W. and Cielo, P.G., Appl. Opt., 1979, vol. 18, no. 22, p. 3720. https://doi.org/10.1364/AO.18.003720

    Article  ADS  Google Scholar 

  6. Lagakos, N., Bush, I.J., Cole, J.H., Bucaro, J.A., Skogen, J.D., and Hocker, G.B., Opt. Lett., 1982, vol. 7, no. 9, p. 460. https://doi.org/10.1364/OL.7.000460

    Article  ADS  Google Scholar 

  7. Yang, Y.C., Lee, H.L., and Chou, H.M., Appl. Opt., 2002, vol. 41, no. 10, p. 1989. https://doi.org/10.1364/AO.41.001989

    Article  ADS  Google Scholar 

  8. Lagakos, N., Hickman, T.R., Cole, J.H., and Bucaro, J.A., Opt. Lett., 1981, vol. 6, no. 9, p. 443. https://doi.org/10.1364/OL.6.000443

    Article  ADS  Google Scholar 

  9. Vlasov, A.A., Aleynik, A.S., Ashirov, A.N., Plotni-kov, M.Yu., and Varlamov, A.V., Tech. Phys. Lett., 2019, vol. 45, no. 8, p. 769. https://doi.org/10.1134/S1063785019080157

    Article  ADS  Google Scholar 

  10. Vlasov, A.A., Plotnikov, M.Y., Ashirov, A.N., Aleynik, A.S., Varlamov, A.V., and Stam, A.M., Proc. 2019 IEEE Int. Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, 2019, p. 305. https://doi.org/10.1109/EExPolytech.2019.8906889

  11. Vlasov, A.A., Plotnikov, M.Y., Aleinik, A.S., and Varlamov, A.V., J. Phys.: Conf. Ser., 2019, vol. 1326, no. 1, p. 012010. https://doi.org/10.1088/1742-6596/1326/1/012010

    Article  Google Scholar 

  12. Poulsen, C.V., Hansen, L.V., Sigmund, O., Pedersen, J.E., and Beukema, M., US Patent 7809029, 2010.

  13. Waagaard, O.H., Ronnekleiv, E., Forbord, S., and Thingbo, D., Proc. SPIE, 2009, vol. 7503, p. 75034Q.

    Article  ADS  Google Scholar 

  14. Beranek, L.L. and Sleeper, H.P., Jr., J. Acoust. Soc. Am., 1946, vol. 18, no. 1, p. 140. https://doi.org/10.1121/1.1916351

    Article  ADS  Google Scholar 

  15. Kopiev, V.F., Palchikovskiy, V.V., Belyaev, I.V., Bersenev, Yu.V., Makashov, S.Yu., Khramtsov, I.V., Konin, I.A., Sorokin, E.V., and Kustov, O.Yu., Acoust. Phys., 2017, vol. 63, no. 1, p. 113. https://doi.org/10.1134/S1063771017010043

    Article  ADS  Google Scholar 

  16. Sapozhkov, M.A., Elektroakustika (Electroacoustics), Moscow: Svyaz’, 1978.

    Google Scholar 

  17. D’yakonov, B.P., Bytovaya audiotekhnika (Home Audio Equipment), Smolensk: Rusich, 1997.

  18. Burko, B.G. and Lyamin, P.M., Bytovye akusticheskie sistemy: ekspluatatsiya, remont (Home Audio Systems: Utilization, Maintenance), Minsk: Belarus’, 1996.

  19. Iofe, V.K. and Lizunkov, M.V., Bytovye akusticheskie sistemy (Home Audio Systems), Moscow: Radio i Svyaz’, 1984.

  20. Thiele, N., J. Audio Eng. Soc., 1971, vol. 19, no. 5, p. 382.

    Google Scholar 

  21. Small, R.H., J. Audio Eng. Soc., 1973, vol. 21, no. 5, p. 363.

    Google Scholar 

  22. Aldoshina, I.A. and Pritts, R., Muzykal’naya akustika (Musical Acoustics), St. Petersburg: Kompozitor, 2006.

  23. Volkov, A.V., Plotnikov, M.Y., Mekhrengin, M.V., Miroshnichenko, G.P., and Aleynik, A.S., IEEE Sens. J., 2017, vol. 17, no. 13, p. 4143. https://doi.org/10.1109/JSEN.2017.2704287

    Article  ADS  Google Scholar 

  24. Plotnikov, M.Y., Lavrov, V.S., Dmitraschenko, P.Y., Kulikov, A.V., and Meshkovskiy, I.K., IEEE Sens. J., 2019, vol. 19, no. 9, p. 3376. https://doi.org/10.1109/JSEN.2019.2894323

    Article  ADS  Google Scholar 

  25. Shatrov, M.G., Yakovenko, A.L., and Krichevskaya, T.Yu., Shum avtomobil’nykh dvigatelei vnutrennego sgoraniya (Noise of Automobile Internal-Combustion Engines), Moscow: Moscow Automobile and Road Construction State Technical Univ., 2014.

  26. Vasil’ev, A.V., Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2004, vol. 6, no. 2.

  27. Grushetskii, I.V. and Kirpichnikov, V.Yu., Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2012, vol. 14, nos. 1–3.

  28. Vartanyan, I.A., Zvukslukhmozg (Sound—Hearing—Brain), Leningrad: Nauka, 1981.

  29. Rozenberg, L.D., Usp. Fiz. Nauk, 1949, vol. 38, no. 5, p. 120.

    Article  Google Scholar 

  30. Smith, S.W., The Scientist and Engineer’s Guide to Digital Signal Processing, San Diego, CA: California Technical Publ., 1999.

    Google Scholar 

  31. Sulima, N.N., Vimiryuval’na Obchislyuval’na Tekh. Tekhnol. Protsesakh, 2013, no. 4, p. 62.

  32. Ivanov, N.I. and Shashurin, A.E., Zashchita ot shuma i vibratsii (Protection Against Noise and Vibration), St. Petersburg: Pechatnyi Tsekh, 2019.

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation (Agreement no.075-11-2019-026, November 27, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vlasov.

Additional information

Translated by A. Seferov

The results of this research were presented and discussed at the third International Conference “Optical Reflectometry, Metrology, and Sensorics 2020” (http://or-2020.permsc.ru/, September 22–24, Perm, Russia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, A.A., Plotnikov, M.Y., Ashirov, A.N. et al. An Experimental Setup for Acoustic Research of the Components of Fiber-Optic Measuring Systems. Instrum Exp Tech 63, 494–501 (2020). https://doi.org/10.1134/S002044122004034X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122004034X

Navigation