Skip to main content
Log in

Formation of Fiber Tapers by Chemical Etching for Application in Fiber Sensors and Lasers

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A method of safe chemical etching of optical fibers for their subsequent application in sensor and laser technologies has been developed. A series of thinned fibers (tapers) with diameters of the thin part of 5.7 to 24.1 μm and lengths of 2.3 to 11.1 mm was prepared. Using a frequency reflectometer, the location of the resulting losses in small-diameter tapers is shown. There is a strong dependence of the losses that occur on defects on the surfaces of cones and the cylindrical part of a taper. LMR resonances were observed in the transmission spectra of large-diameter tapers when thin ZnTe films were deposited on them. Their sensitivity to changes in the refractive index of aqueous solutions was 5230 nm/RIU (refractive index unit). A polymer composite with Bi2Se3, MoSe2, and NiO nanopowders was applied to tapers with diameters of less than 10 μm. They were used in this form as passive Q-factor switches in a ring fiber erbium laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Idachaba, F., Ike, D.U., and Hope, O., Proc. World Congress on Engineering, London, 2014, vol. 1, p. 438.

  2. Arregui, F.J., Villar, I.D., Corres, J.M., Goicoechea, J., Zamarreño, C.R., Elosua, C., Hernaez, M., Rivero, P.J., Socorro, A.B., Urrutia, A., Sanchez, P., Zubiate, P., Lopez, D., De Acha, N., and Matias, I.R., Procedia Eng., 2014, vol. 87, p. 3. https://doi.org/10.1016/j.proeng.2014.11.253

    Article  Google Scholar 

  3. Kalokasidis, K., Onder, M., Trakatelli, M.G., Richert, B., and Fritz, K., Dermatol. Res. Pract., 2013, vol. 2013, article ID 379725. https://doi.org/10.1155/2013/379725

    Article  Google Scholar 

  4. Gräf, S., Staupendahl, G., Krämer, A., and Müller, F.A., Opt. Lasers Eng., 2015, vol. 66, p. 152. https://doi.org/10.1016/j.optlaseng.2014.09.007

    Article  Google Scholar 

  5. Vallet, M., Barreaux, J., Romanelli, M., Pillet, G., Thévenin, J., Wang, L., and Brunel, M., Appl. Opt., 2013, vol. 52, no. 22, p. 5402. https://doi.org/10.1364/AO.52.005402

    Article  ADS  Google Scholar 

  6. Jauregui, C., Limpert, J., and Tünnermann, A., Nat. Photonics, 2013, vol. 7, no. 11, p. 861. https://doi.org/10.1038/nphoton.2013.273

    Article  ADS  Google Scholar 

  7. Rodríguez -Schwendtner, E., González-Cano, A., Díaz -Herrera, N., Navarretec, M.C., and Esteban, Ó., Sens. Actuators, B, 2018, vol. 268, p. 150. https://doi.org/10.1016/j.snb.2018.04.083

  8. Wang, Q. and Zhao, W.-M., Opt. Lasers Eng., 2018, vol. 100, p. 47. https://doi.org/10.1016/j.optlaseng.2017.07.009

    Article  Google Scholar 

  9. Villar, I.D., Arregui, F.J., Zamarreño, C.R., Corres, J., Bariain, C., Goicoechea, J., Cesar, E., Hernaez, M., Rivero, P.J., Lerános, A.B.S., Urrutia, A., Sanchez, P., Zubiate, P., Lopez-Torres, D., De Acha, N., Ascorbe, J., and Matias, I., Sens. Actuators, B, 2017, vol. 240, p. 174. https://doi.org/10.1016/j.snb.2016.08.126

    Article  Google Scholar 

  10. Paliwal, N. and John, J., IEEE Sens. J., 2015, vol. 15, no. 10, p. 5361. https://doi.org/10.1109/JSEN.2015.2448123

    Article  ADS  Google Scholar 

  11. Rivero, P.J., Urrutia, A., Goicoechea, J., and Arregui, F.J., Sens. Actuators, B, 2012, vol. 173, p. 244. https://doi.org/10.1016/j.snb.2012.07.010

    Article  Google Scholar 

  12. Bilro, L., Alberto, N.J., Sá, L.M., Pinto, J. de L., and Nogueira, R., J. Lightwave Technol., 2011, vol. 29, no. 6, p. 864. https://doi.org/10.1109/JLT.2011.2105462

    Article  ADS  Google Scholar 

  13. Tabib-Azar, M., Sutapun, B., Srikhirin, T., Lando, J., and Adamovsky, G., Sens. Actuators, B, 2000, vol. 84, p. 134. https://doi.org/10.1016/S0924-4247(99)00352-0

    Article  Google Scholar 

  14. Usha, S.P. and Gupta, B.D., Appl. Opt., 2017, vol. 56, no. 20, p. 5716. https://doi.org/10.1364/AO.56.005716

    Article  ADS  Google Scholar 

  15. Kuznetsov, P., Yakushcheva, G., Savelyev, E., Yapaskurt, V., Shcherbakov, V., Temiryasev, A., Zakharov, L., Jitov, V., and Sudas, D., Lith. J. Phys., 2019, vol. 59, no. 4, p. 201. https://doi.org/10.3952/physics.v59i4.4136

    Article  Google Scholar 

  16. Li, H.H., J. Phys. Chem. Ref. Data, 1984, vol. 13, no. 1, p. 103. https://doi.org/10.1063/1.555705

    Article  ADS  Google Scholar 

  17. Koo, J., Lee, J., Chi, C., and Lee, J.H., J. Opt. Soc. Am. B, 2014, vol. 31, no. 9, p. 2157. https://doi.org/10.1364/JOSAB.31.002157

    Article  ADS  Google Scholar 

  18. Gao, L., Huang, W., Zhang, J.D., Zhu, T., Zhang, H., Zhao, C.J., Zhang, W., and Zhang, H., Appl. Opt., 2014, vol. 53, no. 23, p. 5117. https://doi.org/10.1364/AO.53.005117

    Article  ADS  Google Scholar 

  19. Zhang, X., Yao, Y., Wang, S., Ma, G., Lei, M., and Liu, W., J. Nonlinear Opt. Phys. Mater., 2019, vol. 28, no. 2, p. 1950019. https://doi.org/10.1142/S021886351950019X

    Article  ADS  Google Scholar 

  20. Kassani, S.H., Khazaeizhad, R., Jeong, H., Nazari, T., Yeom, D., and Oh, K., Opt. Mater. Express, 2015, vol. 5, no. 2, p. 373. https://doi.org/10.1364/OME.5.000373

    Article  ADS  Google Scholar 

  21. Lee, H., Kwon, W.S., Kim, J.H., Kang, D., and Kim, S., Opt. Express, 2015, vol. 23, no. 17, p. 22116. https://doi.org/10.1364/OE.23.022116

    Article  ADS  Google Scholar 

  22. Ko, S., Lee, J., Koo, J., Joo, B.S., Gu, M., and Lee, J.H., J. Lightwave Technol., 2016, vol. 34, no. 16, p. 3776. https://doi.org/10.1109/JLT.2016.2583061

    Article  ADS  Google Scholar 

  23. Soller, B.J., Gifford, D.K., Wolfe, M.S., and Froggatt, M.E., Opt. Express, 2005, vol. 13, p. 666. https://doi.org/10.1364/OPEX.13.000666

    Article  ADS  Google Scholar 

  24. Brambilla, G., Finazzi, V., and Richardson, D.J., Opt. Express, 2004, vol. 12, no. 10, p. 2258. https://doi.org/10.1364/OPEX.12.002258

    Article  ADS  Google Scholar 

  25. Brambilla, G., J. Opt., 2010, vol. 12, no. 4, article ID 043001, p. 19. https://doi.org/10.1088/2040-8978/12/4/043001

    Article  ADS  Google Scholar 

  26. Kuznetsov, P.I., Jitov, V.A., Golant, E.I., Savelyev, E.A., Sudas, D.P., Yakushcheva, G.G., and Golant, K.M., Phys. Scr., 2019, vol. 94, no. 2, article ID 025802. https://doi.org/10.1088/1402-4896/aaf550

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.M. Popov for his help in conducting experiments on the frequency reflectometer.

Funding

This study was performed according to a State Job of the Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, and supported in part by the Russian Foundation for Basic Research, project no. 20-07-00326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sudas.

Additional information

Translated by A. Seferov

The results of this research were presented and discussed at the third International Conference “Optical Reflectometry, Metrology, and Sensorics 2020 " (http://or-2020.permsc.ru/, September 22–24, Perm, Russia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.I., Sudas, D.P. & Savel’ev, E.A. Formation of Fiber Tapers by Chemical Etching for Application in Fiber Sensors and Lasers. Instrum Exp Tech 63, 516–521 (2020). https://doi.org/10.1134/S0020441220040302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220040302

Navigation