Skip to main content
Log in

An Optical System with Brightness Amplification for Studying the Surface of Metal Nanopowders during Combustion

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of using an optical system with brightness amplification based on copper bromide vapors, which consisted of a laser monitor for studying the surface of an aluminum nanopowder during a high-temperature combustion process, are presented. A pulsed laser with a wavelength of 660 nm and the possibility of external synchronization was used to initiate the combustion process, thus making it possible to set the start time and the duration of the exposure. The average brightness of images of the brightness amplifier obtained by registering the output radiation with a photodiode is used to quantify the change in the reflection coefficient of the nanopowder surface and the time stages of the combustion process. The conventional scheme of a laser monitor with a focal length of 8 cm and a scheme with an increased focal length of 50 cm are considered. The possibility to perform quantitative analysis of processes during research using a laser monitor is shown. The error introduced to the measurement results by the instability of the lasing energy of the brightness amplifier is estimated. When observing the surface of the aluminum plate used as an object of research, the fluctuation in the average brightness of the laser-monitor images that was recorded with the photodiode did not exceed 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Teipel, U., Energetic Materials, Weinheim: Wiley-VCH, 2004.

    Book  Google Scholar 

  2. Zarko, V.E. and Gromov, A.A., Energetic Nanomaterials: Synthesis, Characterization, and Application, Amsterdam: Elsevier, 2016.

    Google Scholar 

  3. Ivanov, Yu.F., Osmonoliev, M.N., Sedoi, V.S., Arkhipov, V.A., Bondarchuk, S.S., Vorozhtsov, A.B., Korotkikh, A.G., and Kuznetsov, V.T., Propellants, Explos., Pyrotech., 2003, vol. 28, no. 6, p. 319. https://doi.org/10.1002/prep.200300019

    Article  Google Scholar 

  4. Brousseau, P. and Anderson, C.J., Propellants, Explos., Pyrotech., 2002, vol. 27, no. 5, p. 300. https://doi.org/10.1002/1521-4087(200211)27:5%3C300::AID-PREP300%3E3.0.CO;2-%23

    Article  Google Scholar 

  5. Sundaram, D.S., Yang, V., and Zarko, E., Combust., Explos., Shock Waves, 2015, vol. 51, no. 2, p. 173. https://doi.org/10.1134/S0010508215020045

    Article  Google Scholar 

  6. Kharatyan, S.L. and Merzhanov, A.G., Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 1, p. 59. https://doi.org/10.3103/S1061386212010074

    Article  Google Scholar 

  7. Zakorzhevskii, V.V., Borovinskaya, I.P., and Sach-kova, N.V., Inorg. Mater., 2002, vol. 38, no. 11, p. 1131. https://doi.org/10.1023/A:1020966500032

    Article  Google Scholar 

  8. Il’in, A.P., Mostovshchikov, A.V., and Timchenko, N.A., Combust., Explos., Shock Waves, 2013, vol. 49, no. 3, p. 320. https://doi.org/10.1134/S0010508213030088

    Article  Google Scholar 

  9. Saceleanu, F., Idir, M., Chaumeix, N., and Wen, J.Z., Front. Chem., 2018, vol. 6, p. 465. https://doi.org/10.3389/fchem.2018.00465

    Article  ADS  Google Scholar 

  10. McNesby, K.L., Homan, B.E., Benjamin, R.A., Boyle, V.M., Densmore, J.M., and Biss, M.M., Rev. Sci. Instrum., 2016, vol. 87, no. 5, p. 051301. https://doi.org/10.1063/1.4949520

    Article  Google Scholar 

  11. Abdel-Hafez, A.A., Brodt, M.W., Carney, J.R., and Lightstone, J.M., Rev. Sci. Instrum., 2011, vol. 82, no. 6, p. 064101. https://doi.org/10.1063/1.3598341

    Article  ADS  Google Scholar 

  12. Chen, Y., Guildenbecher, D.R., Hoffmeister, K.N.G., Cooper, M.A., Stauffacher, H.L., Oliver, M.S., and Washburnb, E.B., Combust. Flame, 2017, vol. 182, p. 225. https://doi.org/10.1016/j.combustflame.2017.04.016

    Article  Google Scholar 

  13. Plantier, K.B., Pantoya, M.L., and Gash, A.E., Combust. Flame, 2005, vol. 140, no. 4, p. 299. https://doi.org/10.1016/j.combustflame.2004.10.009

    Article  Google Scholar 

  14. Sivan, J. and Haas, Y., Propellants, Explos., Pyrotech., 2015, vol. 40, no. 5, p. 755. https://doi.org/10.1002/prep.201500080

    Article  Google Scholar 

  15. Li, L., Ilyin, A.P., Gubarev, F.A., Mostovshchikov, A.V., and Klenovskii, M.S., Ceram. Int., 2018, vol. 44, no. 16, p. 19800. https://doi.org/10.1002/prep.201500080

    Article  Google Scholar 

  16. Li, L., Mostovshchikov, A.V., Ilyin, A.P., Smirnov, A., and Gubarev, F.A., IEEE Trans. Instrum. Meas., 2020, vol. 69, no. 2, p. 457. https://doi.org/10.1109/TIM.2019.2903616

    Article  Google Scholar 

  17. Zemskov, K.I., Isaev, A.A., Kazaryan, M.A., and Petrash, G.G., Kvantovaya Elektron., 1974, vol. 1, no. 1, p. 14.

    Google Scholar 

  18. Astadzhov, D.N., Vuchkov, N.K., Zemskov, K.I., Isaev, A.A., Kazaryan, M.A., Petrash, G.G., and Sabotinov, N.V., Kvantovaya Elektron., 1988, vol. 15, no. 4, p. 716.

    ADS  Google Scholar 

  19. Batenin, V.M., Klimovskii, I.I., and Selezneva, L.A., Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 4, p. 857.

    Google Scholar 

  20. Abramov, D.V., Galkin, A.F., Zharenova, S.V., Klimovskii, I.I., Prokoshev, V.G., and Shamanskaya, E.L., Izv. Tomsk.Politekh. Univ., 2008, vol. 312, no. 2, p. 97.

    Google Scholar 

  21. Opticheskie sistemy s usilitelyami yarkosti (Optical Systems with Luminance Amplifiers), vol. 206 of Trudy FIAN (Scientific Works of P.N. Lebedev Physical Institute, Russian Academy of Sciences), Petrash, G.G., Ed., Moscow: Nauka, 1991.

    Google Scholar 

  22. Kazaryan, M.A., Batenin, V.M., Buchanov, V.V., Boichenko, A.M., Klimovskii, I.I., and Molodykh, E.I., High Brightness Metal Vapor Lasers: Physics and Applications, Boca Raton, FL: CRC Press, 2017.

    MATH  Google Scholar 

  23. Evtushenko, G.S., Shiyanov, D.V., and Gubarev, F.A., Lazery na parakh metallov s vysokimi chastotami sledovaniya impul’sov (Metal Vapors Lasers with High Pulse Recurrence Frequencies), Tomsk: Tomsk Polytechnic Univ., 2010.

  24. Evtushenko, G.S., Trigub, M.V., Gubarev, F.A., Evtushenko, T.G., Torgaev, S.N., and Shiyanov, D.V., Rev. Sci. Instrum., 2014, vol. 85, no. 3, p. 033111. https://doi.org/10.1063/1.4869155

    Article  ADS  Google Scholar 

  25. Gubarev, F.A., Trigub, M.V., Klenovskii, M.S., Li, L., and Evtushenko, G.S., Appl. Phys. B: Lasers Opt., 2016, vol. 122, no. 1, p. 2. https://doi.org/10.1088/1757-899X/81/1/012116

    Article  ADS  Google Scholar 

  26. Vision Research. https://www.phantomhighspeed.com/products.

  27. Li, L., Antipov, P.A., Mostovshchikov, A.V., Ilyin, A.P., and Gubarev, F.A., Prog. Electromagn. Res. M, 2019, vol. 84, p. 85. https://doi.org/10.2528/PIERM19060103

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-03-00160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Gubarev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubarev, F.A., Kim, S., Li, L. et al. An Optical System with Brightness Amplification for Studying the Surface of Metal Nanopowders during Combustion. Instrum Exp Tech 63, 375–382 (2020). https://doi.org/10.1134/S0020441220030173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220030173

Navigation