Skip to main content
Log in

Use of Dynamic Magnonic Crystals for Measuring the Parameters of Surface Magnetostatic Waves

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The use of dynamic magnonic crystals created by a surface acoustic wave (SAW) for measuring the parameters of a surface magnetostatic wave in a film of yttrium iron garnet (YIG) on a gallium gadolinium garnet (GGG) substrate is described. A method for measuring the dispersion characteristics of a surface magnetostatic spin wave (SMSW) and results of such measurements are presented. The method is based on measuring reflected SMSWs at frequencies of forbidden magnonic gaps using the same antenna for the excitation of incident SMSWs and the detection of reflected SMSWs. The attenuation parameter of the SMSW is determined by measuring the frequency width of reflected SMSW signals. The dispersion curves have been measured for several angles between the direction of the magnetic field and the wave vector in the plane of YIG film and for two thicknesses of the YIG film at wave numbers ranging up to 1000 cm–1. Results of measurements of the attenuation parameter are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ishak, W.S., Proc. IEEE, 1988, vol. 76, no. 2, p. 171. https://doi.org/10.1109/5.4393

    Article  ADS  Google Scholar 

  2. Nikitov, S.A., Kalyabin, D.V., Lisenkov, I.V., Slavin, A.N., Barabanenkov, Yu.N., Osokin, S.A., Sadovnikov, A.V., Beginin, E.N., Morozova, M.A., Sharaevskii, Yu.P., Filimonov, Yu.A., Khivintsev, Yu.V., Vysotskii, S.L., Sakharov, V.K., and Pavlov, E.S., Usp. Fiz. Nauk, 2015, vol. 185, no. 10, p. 1099. https://doi.org/10.3367/UFNr.0185.2015m.1099

    Article  Google Scholar 

  3. Chumak, A.V., Vasyuchka, V.I., Serga, A.A., and Hillebrands, B., Nat. Phys., 2015, vol. 11, no. 6, p. 453.

    Article  Google Scholar 

  4. Davies, C.S., Francis, A., Sadovnikov, A.V., Chertopalov, S.V., Bryan, M.T., Grishin, S.V., Allwood, D.A., Sharaevskii, S.A., Nikitov, S.A., and Kruglyak, V.V., Phys. Rev. B, 2015, vol. 92, no. 2, p. 020408. https://doi.org/10.1103/PhysRevB.92.020408

    Article  ADS  Google Scholar 

  5. Gurevich, A.G. and Melkov, G.A., Magnetization Oscillations and Waves, New York, London, Tokyo: CRC Press, 1996.

    Google Scholar 

  6. Jae Hyun Kwon, Sankha Subhra Mukherjee, Praveen Deorani Masamitsu, and Hayashi Hyunsoo Yang, Appl. Phys. A: Mater. Sci. Process., 2013, vol. 111, no. 2, p 369.

    Article  ADS  Google Scholar 

  7. Vysotskii, S.L., Khivintsev, Y.V., Sakharov, V.K., Dudko, G.M., and Kozhevnikov, A.V., IEEE Magn. Lett., 2017, vol. 8, Art no. 3706104, pp. 1–4. https://doi.org/10.1109/LMAG.2017.2701787

  8. Serga, A.A., Chumak, A.V., and Hillebrands, B., J. Phys. D: Appl. Phys., 2010, vol. 43, no. 26, p. 264002. https://doi.org/10.1088/0022-3727/43/26/264002

    Article  ADS  Google Scholar 

  9. Kruglyak, V.V., Demokritov, S.O., and Grundler, D., J. Phys. D: Appl. Phys., 2015, vol. 43, p. 264001.

    Article  ADS  Google Scholar 

  10. Chumak, A.V. and Schultheiss, H., arXiv preprint arXiv: 2019.20101901.07021.

  11. Chumak, A.V., Serga, A.A., and Hillebrands, B., J. Phys. D: Appl. Phys., 2017, vol. 50, p. 244001.

    Article  ADS  Google Scholar 

  12. Kryshtal, R.G. and Medved, A.V., Appl. Phys. Lett., 2012, vol. 100, no. 19, p. 192410. https://doi.org/10.1016/j.jmmm.2015.07.086

    Article  ADS  Google Scholar 

  13. Kryshtal, R.G., Kundin, A.P., and Medved, A.V., Instrum. Exp. Tech., 2019, vol. 62, no. 1, p. 42. https://doi.org/10.1134/S0020441219010123

    Article  Google Scholar 

  14. Chumak, A.V., Neumann, T., Serga, A.A., Hillebrands, B., and Kostylev, M.P., J. Phys. D: Appl. Phys., 2009, vol. 42, no. 20, p. 205005.

    Article  ADS  Google Scholar 

  15. Nikitin, A.A., Ustinov, A.B., Semenov, A.A., Chumak, A.V., Serga, A.A., Vasyuchka, V.I., and Hillebrands, B., Appl. Phys. Lett., 2015, vol. 106, no. 10, p. 102405. https://doi.org/10.1063/1.4914506

    Article  ADS  Google Scholar 

  16. Kryshtal, R.G. and Medved, A.V., J. Magn. Magn. Mater., 2015, vol. 395, p. 180. https://doi.org/10.1016/j.jmmm.2015.07.086

    Article  ADS  Google Scholar 

  17. Kryshtal, R.G. and Medved, A.V., J. Magn. Magn. Mater., 2017, vol. 426, p. 666. https://doi.org/10.1016/j.jmmm.2016.10.148

    Article  ADS  Google Scholar 

  18. Kryshtal, R.G. and Medved, A.V., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 49, p. 495004.

    Article  ADS  Google Scholar 

  19. Mednikov, A.M., Popkov, A.F., Anisimkin, V.I., Nam, B.P., Petrov, A.A., Spivakov, A.A., and He, A.S., Pis’ma Zh. Eksp. Teor. Fiz., 1981, vol. 33, p. 632.

    Google Scholar 

  20. Popkov, A.F., Fiz. Met. Metalloved., 1985, vol. 59, p. 632.

    Google Scholar 

  21. Hanna, S.M., Murphy, G.P., Sabetfakhri, K., and Stratakis, K., Proc. 1990 IEEE Ultrasonics Symposium, Honolulu, HI, 1990, p. 209.

  22. Kryshtal’, R.G., Medved’, A.V., and Popkov, A.F., Radiotekh. Electron., 1994, no. 4, p. 647.

  23. Damon, R.W. and Eshbach, J.R., Phys. Chem. Solids, 1964, vol. 19, p. 308.

    Article  Google Scholar 

  24. Bespyatykh, Yu.I., Zubkov, V.I., and Tarasenko, V.V., Zh. Tekh. Fiz., 1980, vol. 50, no. 1, p. 140.

    Google Scholar 

  25. Vashkovskii, A.V. and Lokk, E.G., Usp. Fiz. Nauk, 2006, vol. 176, p. 557. https://doi.org/10.1070/PU2006v049n05ABEH006035

    Article  Google Scholar 

Download references

Funding

This work was supported by the state budget, project no. 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Medved’.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryshtal’, R.G., Medved’, A.V. Use of Dynamic Magnonic Crystals for Measuring the Parameters of Surface Magnetostatic Waves. Instrum Exp Tech 62, 850–854 (2019). https://doi.org/10.1134/S0020441219060101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219060101

Navigation