Skip to main content
Log in

The Underlying Technology of a Broadband Highly Efficient Acousto-Optic Cell (Deflector) on the Basis of a Paratellurite Crystal

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The technology for creating a broadband highly efficient piezoelectric transducer (PET) for generating a slow acoustic mode in an acousto-optic paratellurite crystal is based on the acoustic matching of a lithium-niobate transducer to paratellurite using the method of galvanic deposition of an intermediate tin layer. A thin heat-conducting liquid layer between the heat sink and PET is used to remove heat from the PET without acoustic damping. A broadband highly efficient deflector with a center frequency of ultrasound of 37 MHz, a frequency band of more than 30 MHz, and a diffraction efficiency of more than 90% at a wavelength of 1.06 μm was created. A stable continuous operating mode of the deflector at acoustic-wave intensities of more than 20 W/cm2 has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Yano, T., Kawabuichi, M., Fukumoto, A., and Watanabe, A., Appl. Phys. Lett., 1975, vol. 26, no. 12, p. 689.

    Article  ADS  Google Scholar 

  2. Magdich, L.N. and Molchanov, V.Ya., Akustoopticheskie ustroistva i ikh primenenie (Acousto-Optic Devices and their Application), Moscow: Sovetskoe Radio, 1978.

  3. Antonov, S.N., Vainer, A.V., Proklov, V.V., and Rezvov, Yu.G., Tech. Phys., 2013, vol. 58, no. 9, p. 1346.

    Article  Google Scholar 

  4. Antonov, S.N., Tech. Phys., 2016, vol. 61, no. 1, p. 130.

    Article  Google Scholar 

  5. Aboujeib, J., Perennou, A., Quintard, V., and Bihan, J.L., J. Opt. A: Pure Appl. Opt., 2007, vol. 9, p. 463.

    Article  ADS  Google Scholar 

  6. Balakshii, V.I., Parygin, V.N., and Chirkov, L.E., Fizicheskie osnovy akustooptiki (Physical Fundamentals of Acoustooptics), Moscow: Radio i Svyaz’, 1985.

  7. Antonov, S.N., Tech. Phys., 2016, vol. 61, no. 10, p. 1597.

    Article  Google Scholar 

  8. Antonov, S.N., Instrum. Exp. Tech., 2019, vol. 62, no. 3, p. 386. https://doi.org/10.1134/S0020441219020155

    Article  Google Scholar 

  9. Akusticheskie kristally. Spravochnik (Acoustical Crystals. Handbook), Moscow: Nauka, 1982.

  10. Augustine, L.J. and Andersen, J., J. Acoust. Soc. Am., 1979, vol. 66, no. 3, p. 629. https://doi.org/10.1121/1.383687

    Article  ADS  Google Scholar 

  11. Antonov, S.N., Acoust. Phys., 2018, vol. 64, no. 4, p. 432. https://doi.org/10.1134/S1063771018040012

    Article  ADS  Google Scholar 

  12. Antonov, S.N. and Taeshnikov, A.B., Akust. Zh., 1991, vol. 37, no. 5, p. 837.

    Google Scholar 

  13. Mikheev, M.A., Osnovy teploperedachi (Fundamentals of Heat Transfer), Mikheev, M.A., Ed., Moscow: Energiya, 1973.

    Google Scholar 

  14. Brekhovskikh, L.M. and Godin, O.A., Akustika sloistykh sred (Acoustics of Layered Media), Moscow: Nauka, 1989.

  15. Roshchina, G.L., Yurilova, D.K., Kinzerskaya, G.P., and Rudenko, A.P., in Mezhvedomstvennyi nauchnyi sbornik. Fizika zhidkogo sostoyaniya (Interdepartmental Collection of Scientific Works. Physics of Liquid State), Kiev: Vishcha Shkola, 1975, vol. 3, issue 3, p. 112.

  16. Litovic, T. and Davis, K., in Physical Acoustics. Principles and Methods, Mason, W.P., Ed., New York: Academic Press, 1964, vol. 2, part A.

  17. Krasil’nikov, V.A. and Krylov, V.V., Vvedenie v fizicheskuyu akustiku (Introduction into Physical Acoustics), Moscow: Nauka, 1984.

Download references

Funding

This study was supported by budget financing within the framework of the State Job no. 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Antonov.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, S.N. The Underlying Technology of a Broadband Highly Efficient Acousto-Optic Cell (Deflector) on the Basis of a Paratellurite Crystal. Instrum Exp Tech 62, 823–829 (2019). https://doi.org/10.1134/S0020441219060010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219060010

Navigation