Skip to main content
Log in

A Laboratory Apparatus for Spark Plasma Sintering of Ceramic and Composite Materials

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

The design of a laboratory apparatus for spark plasma sintering of powder compositions of different compositions and purposes is described. The main active factors of the spark plasma sintering process, the nature and degree of their influence on the mechanism of consolidation of particles of powder mixtures, as well as the structure and properties of the synthesized ceramics are determined. The data on the synthesis of 25.4 mm ceramic disks of samarium monosulfide powder are given. It is shown that the optimization of the synthesis regimes allows one to obtain a compacted material with a density close to the theoretical one and a phase composition identical to the composition of the initial powder mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ohji, T. and Singh, M., Engineered Ceramics: Current Status and Future Prospects, Hoboken, NJ: Wiley, 2016.

    Book  Google Scholar 

  2. Bezdorozhev, O., Borodianska, H., Sakka, Y., and Vasylkiv, O., J. Nanosci. Nanotechnol., 2014, vol. 14, no. 6, p. 4218. https://doi.org/10.1166/jnn.2014.8653

    Article  Google Scholar 

  3. Essi, M.M.-M., Yot, P.G., Chevallier, G., Estournes, C., and Pradel, A., Dig. J. Nanomater. Biostruct., 2011, vol. 6, no. 4, p. 1777.

    Google Scholar 

  4. Kim, B.-N., Hiraga, K., Morita, K., and Yoshida, Y., Scr. Mater., 2007, vol. 57, no. 7, p. 607. https://doi.org/10.1016/j.scriptamat.2007.06.009

    Article  Google Scholar 

  5. Gu, Y.W., Loh, N.H., Khor, K.A., Tor, S.B., and Cheang, P., Biomaterials, 2002, vol. 23, no. 1, p. 37. https://doi.org/10.1016/S0142-9612(01)00076-X

    Article  Google Scholar 

  6. Wang, H., Li, J.-F., Nan, C.-W., and Zhou, M., Appl. Phys. Lett., 2006, vol. 88, p. 092104. https://doi.org/10.1063/1.2181197

    Article  ADS  Google Scholar 

  7. Abduev, A.Kh., Abduev, M.Kh.-M., Asvarov, A.Sh., and Akhmedov, A.K., RF Minor Patent 183245 U1, Byull. Izobret., 2018, no. 26.

  8. Copel, M., Kuroda, M.A., Gordon, M.S., Liu, X.-H., Mahajan, S.S., Martyna, G.J., Moumen, N., Armstrong, C., Rossnagel, S.M., Shaw, T.M., Solomon, P.M., Theis, T.N., Yurkas, J.J., Zhu, Y., and Newns, D.M., Nano Lett., 2013, vol. 13, no. 10, p. 4650. https://doi.org/10.1021/nl401710f

    Article  ADS  Google Scholar 

  9. Kazakov, S.A., Sokolov, A.V., Grevtsev, M.A., Sharenkova, N.V., and Kaminskii, V.V., Nauchn. Priborostr., 2018, vol. 28, no. 3, p. 137.

    Article  Google Scholar 

  10. Kaminskii, V.V., Golubkov, A.V., and Vasil’ev, L.N., Phys. Solid State, 2002, vol. 44, p. 1574.

    Article  ADS  Google Scholar 

  11. Takenaka, K., Asai, D., Kaizu, R., Mizuno, Y., Yokoyama, Y., Okamoto, Y., Katayama, N., Suzuki, H.S., and Imanaka, Y., Sci. Rep., 2019, vol. 9, p. 122. https://doi.org/10.1038/s41598-018-36568-w

    Article  ADS  Google Scholar 

  12. Tsai, M.S. and Hon, M.H., J. Mater. Res., 1994, vol. 9, p. 2939. https://doi.org/10.1557/JMR.1994.2939

    Article  ADS  Google Scholar 

  13. Bamburov, V.G., Andreev, O.V., Ivanov, V.V., Voropai, A.N., Gorshkov, A.V., Polkovnikov, A.A., and Bobylev, A.N., Dokl. Phys. Chem., 2017, vol. 473, no. 2, p. 66.

    Article  Google Scholar 

  14. Polkovnikov, A.A. and Andreev, O.V., RF Patent 2674346 C1, Byull. Izobret., 2018, no. 34.

  15. Sharenkova, N.V., Kaminskii, V.V., Golubkov, A.V., Vasil’ev, L.N., and Kamenskaya, G.A., Phys. Solid State, 2005, vol. 47, p. 622.

    Article  ADS  Google Scholar 

  16. Andreev, O.V., Vysokikh, A.S., and Vaulin, V.G., Russ. J. Inorg. Chem., 2008, vol. 53, no. 8, p. 1320.

    Article  Google Scholar 

Download references

Funding

This work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation using the equipment of the Analytical Center for Collective Use of the Dagestan Scientific Center of the Russian Academy of Sciences in the framework of the state assignment (AAAA-A17-117021310364-1) in terms of developing a laboratory apparatus and in the framework of the work on Research Center Crystallography and Photonics RAS in the manufacture of samarium sulfide targets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Asvarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asvarov, A.S., Muslimov, A.E., Akhmedov, A.K. et al. A Laboratory Apparatus for Spark Plasma Sintering of Ceramic and Composite Materials. Instrum Exp Tech 62, 726–730 (2019). https://doi.org/10.1134/S0020441219050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219050038

Navigation