Skip to main content
Log in

A Dual-parameter Fabry–Perot Interferometer Sensor Based on Single Mode-Photonic Crystal-Multimode Fiber Structure

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The paper presents a FPI sensor by splicing a photonic crystal fiber (PCF) to a well-cleaved single-mode fiber (SMF) and a multimode fiber (MMF), preparing a SMF–PCF–MMF structure, and the section of PCF was the cavity. Temperature and NaCl solution concentration responses were investigated experimentally. The temperature sensitivity is ∼12.3 pm/°C and concentration sensitivity is ∼0.01 dB/%. The proposed sensor could offer such features as low cross-sensitivity, good temperature stability, temperature and concentration linearity are both over 0.996, making it attractive for liquid concentration and temperature measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. He, W., Fang, Y.T., Zhu, L.Q., Dong, M.L., Lou, X.P., and Luo, F., Optik, 2018, vol. 158, p. 1295. https://doi.org/10.1016/j.ijleo.2018.01.014

    Article  ADS  Google Scholar 

  2. Chen, T., Tu, J., Song, X.C., and Li, Z.H., Instrum. Exp. Tech., 2017, vol. 60, p. 301. https://doi.org/10.1134/S0020441217020245

    Article  Google Scholar 

  3. Khan, M.R.R., Watekar, A.V., and Kang, S.W., IEEE Sens. J., 2018, vol. 18, no. 4, p. 1528. https://doi.org/10.1109/JSEN.2017.2786279

    Article  ADS  Google Scholar 

  4. Xiao, F., Hulsey, J.L., and Balasubramanian, R., Struct. Control. Health Monit., 2017, vol. 24, p. e2020. https://doi.org/10.1002/stc.2020

    Article  Google Scholar 

  5. Zhang, W., Hao, J.Q., Dong, M.L., Lou, X.P., and Zhu, L.Q., Optik, 2018, vol. 171, p. 632. https://doi.org/10.1016/j.ijleo.2018.05.133

    Article  ADS  Google Scholar 

  6. Costa, G.K.B., Gouvea, P., Soares, L., Pereira, J.M.B., Favero, F., Braga, A.M.B, Palffy-Muhoray, P., Bruno, A.C., and Carvalho, I.C.S., Opt. Express, 2016, vol. 24, no. 13, p. 14690. https://doi.org/10.1364/OE.24.014690

    Article  ADS  Google Scholar 

  7. Wu, C., Liu, Z.Y., Zhang, A.P., Guan, B.O., and Tam, H.Y., Opt. Express, 2014, vol. 22, no. 18, p. 21757. https://doi.org/10.1364/OE.22.021757

    Article  ADS  Google Scholar 

  8. Fu, G.W., Li, Y., Li, Q.F., Yang, J.D., Fu, X.H., and Bi, W.H., IEEE Photonics J., 2017, vol. 9, no. 3, p. 7103114. https://doi.org/10.1109/JPHOT.2017.2692277

    Google Scholar 

  9. Poeggel, S., Duraibabu, D., Tosi, D., Leen, G., Lewis, E., McGrath, D., Fusco, F., Sannino, S., Lupoli, L., Ippolito, J., and Mirone, V., J. Biomed. Opt., 2015, vol. 20, no. 3, p. 037005. https://doi.org/10.1117/1.JBO.20.3.037005

    Article  ADS  Google Scholar 

  10. Liao, C.R., Liu, S., Xu, L., Wang, C., Wang, Y.P., Li, Z.Y., Wang, Q., and Wang, D.N., Opt. Lett., 2014, vol. 39, no. 10, p. 2827. https://doi.org/10.1364/OL.39.002827

    Article  ADS  Google Scholar 

  11. Liu, Y. and Qu, S.L., Appl. Opt., 2014, vol. 53, no. 3, p. 469. https://doi.org/10.1364/AO.53.000469

    Article  ADS  Google Scholar 

  12. Zhang, G.L., Yang, M.H., and Dai, Y.T., Chin. Opt. Lett., 2014, vol. 12, no. 1, Suppl., p. 77. https://doi.org/10.3788/COL201412.S11202

    Article  ADS  Google Scholar 

  13. Dash, J.N. and Jha, R., J. Lightwave Technol., 2016, vol. 34, no. 13, p. 3188. https://doi.org/10.1109/JLT.2016.2556722

    Article  ADS  Google Scholar 

  14. Polyzos, D., Mathew, J., MacPherson, W.N., and Maier, R.R.J., Proc. Conference SPIE Fiber Optic Sensors and Applications, Baltimore, 2016, p. 985218. https://doi.org/10.1117/12.2223889

  15. Ran, Z.L., Liu, S., Liu, Q., Wang, Y.J., Bao, H.H., and Rao, Y.J., IEEE Sens. J., 2015, vol. 15, no. 7, p. 3955. https://doi.org/10.1109/JSEN.2014.2371243

    Article  ADS  Google Scholar 

  16. Wen, X.D., Ning, T.G., Bai, Y., Li, C., Li, J., and Zhang, C.B., Opt. Express, 2015, vol. 23, no. 9, p. 11526. https://doi.org/10.1364/OE.23.011526

    Article  ADS  Google Scholar 

  17. Shangguan, C.M., Zhang, W., He, W., Luo, F., and Zhu, L.Q., Opt. Eng., 2018, vol. 57, no. 4, p. 047103. https://doi.org/10.1117/1.OE.57.4.047103

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was funded by the 111 Project (grant no. D17021), Program for Changjiang Scholars and Innovative Research Team in University (grant no. IRT_16R07), and National Natural Science Foundation of China (grant nos. 51775051 and 61801030).

Conflict of Interest: The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Mingli or Zhu Lianqing.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangpeng, Z., Wei, H., Wen, Z. et al. A Dual-parameter Fabry–Perot Interferometer Sensor Based on Single Mode-Photonic Crystal-Multimode Fiber Structure. Instrum Exp Tech 62, 426–431 (2019). https://doi.org/10.1134/S0020441219030266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219030266

Navigation