Skip to main content
Log in

A Conical Ion Diode with Self-Magnetic Insulation of Electrons

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of studying the generation of a gigawatt-power pulsed ion beam formed by a diode in the mode of self-magnetic insulation of electrons are presented. Studies were carried out at the TEMP-4M accelerator in the mode of generating two pulses: the first is negative (500 ns, 150–200 kV) and the second is positive (150 ns, 250–300 kV). The formation of anode plasma occurs during the explosive emission of electrons during the first pulse. To improve the efficiency of generating an ion current, a conical geometry of the diode was proposed in which the electron-drift length exceeds that in the previous diode structures by factor of 2. It was found that the energy efficiency in the conical diode increased to 15–17%, while the ion-beam energy density at the focus increased to 2–3 J/cm2; the beam consisted of protons and carbon ions. The efficiency of suppression of the electron component of the total current in the diode was analyzed and the calculations of the electron-drift duration and ion acceleration were performed. It is shown that in the diode of the new design, efficient plasma formation occurs on the entire working surface of the graphite anode, while the plasma concentration may limit the ion current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Bugaev, S.P., Krendel’, Yu.E., and Shchanin, P.M., Elektronnye puchki bol’shogo secheniya (Electron Beams with Large Cross-Sections), Moscow: Energoizdat, 1984.

  2. Pushkarev, A.I., Isakova, Yu.I., Sazonov, R.V., and Kholodnaya, G.E., Generatsiya puchkov zaryazhennykh chastits v diodakh so vzryvoemissionnym katodom (Generation of Charged Particles Beams in Diodes with Explosive-Emission Cathode), Moscow: Fizmatlit, 2013.

  3. Bystritskii, V.M. and Didenko, A.N., High-Power Ion Beams, American Institute of Physics, New York, 1989

  4. Langmuir, I., Phys. Rev., 1929, vol. 2, p. 450.

    Article  ADS  Google Scholar 

  5. Sudan, R.N. and Lovelace, R.V., Phys. Rev. Lett., 1973, vol. 31, no. 16, p. 1174.

    Article  ADS  Google Scholar 

  6. Dreike, P., Eichenberger, C., Humphries, S., and Sudan, R., J. Appl. Phys., 1976, vol. 47, no. 1, p. 85.

    Article  ADS  Google Scholar 

  7. Lopatin, V.S., Remnev, G.E., Furman, E.G., Makeev, V.A., and Stepanov, A.V., Instrum. Exp. Tech., 2004, vol. 47, no. 4, pp. 484–488. https://doi.org/10.1023/B:INET.0000038393.20778.4d

    Article  Google Scholar 

  8. Humphries, S., Plasma Phys., 1977, vol. 19, p. 399.

    Article  ADS  Google Scholar 

  9. Pushkarev, A.I., Isakova, Yu.I., and Khailov, I.P., Instrum. Exp. Tech., 2016, vol. 59, no. 4, pp. 544–550. https://doi.org/10.1134/S0020441216040102

    Article  Google Scholar 

  10. Pushkarev, A.I., Isakova, Y.I., and Prima, A.I., Laser Part. Beams, 2018, vol. 36, no. 2, p. 201. https://doi.org/10.1017/S0263034618000186

    Article  ADS  Google Scholar 

  11. Humphries, S., Charged Particle Beams, New York: Wiley, 1990.

    Google Scholar 

  12. Morozov, A.I., Introduction to Plasma Dynamics, Cambridge, International Science Publishing, 2010.

  13. ELCUT 5.5. Software Package for Simulating Electromagnetic, Heat, and Mechanical Problems. http://elcut.ru/.

  14. Artsimovich, L.A. and Luk’yanov, S.Yu., Dvizhenie zaryazhennykh chastits v elektricheskikh i magnitnykh polyakh. Uchebnoe posobie (Charged Particles Motion in Electric and Magnetic Fields. A Tutorial), Moscow: Nauka, 1976.

  15. Matveev, A.N., Elektrichestvo i magnetizm (Electricity and Magnetism), Moscow: Vysshaya Shkola, 1983.

  16. Werner, Z., Piekoszewski, J., and Szymczyk, W., Vacuum, 2001, vol. 63, no. 4, p. 701. https://doi.org/10.1016/S0042-207X(01)00261-5

    Article  Google Scholar 

  17. Davis, H.A., Bartsch, R.R., Olson, J.C., Rej, D.J., and Waganaar, W.J., J. Appl. Phys., 1997, vol. 82, p. 3223. https://doi.org/10.1063/1.365629

    Article  ADS  Google Scholar 

  18. Isakova, Yu.I. and Pushkarev, A.I., Instrum. Exp. Tech., 2013, vol. 56, no. 2, p. 185–192. https://doi.org/10.1134/S0020441213020085

    Article  Google Scholar 

  19. Fridman, A.P., Plasma Chemistry, New York: Cambridge Univ. Press, 2008.

    Book  Google Scholar 

  20. Bellan, P.M., Fundamentals of Plasma Physics, New York: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  21. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Usp. Fiz. Nauk, 1972, vol. 142, p. 353. https://doi.org/10.3367/UFNr.0107.197207a.0353

    Article  Google Scholar 

  22. Mesyats, G.A., Ektony v vakuumnom razryade: proboi, iskra, duga (Ectons in Vacuum Discharge: Breakdown, Spark, Arc), Moscow: Nauka, 2000.

  23. Logachev, E.I., Remnev, G.E., and Usov, Yu.P., Pis’ma Zh. Tekh. Fiz., 1980, vol. 6, no. 22, p. 1404.

    Google Scholar 

  24. Belomyttsev, S.Ya., Korovin, S.D., and Mesyats, G.A., Pis’ma Zh. Tekh. Fiz., 1980, vol. 6, no. 18, p. 1089.

    Google Scholar 

  25. Yarmolich, D., Vekselman, V., Gurovich, V.Tz., Gleizer, J.Z., Felsteiner, J., and Krasik, Ya.E., Phys. Plasmas, 2008, vol. 15, p. 123507. https://doi.org/10.1063/1.3041162

    Article  ADS  Google Scholar 

  26. Li, L., Chang, L., Liu, J., Chen, G., and Wen, J., Laser Part. Beams, 2012, vol. 30, no. 4, p. 541. https://doi.org/10.1017/S0263034612000468

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 17-79-10140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Pushkarev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, Y.I., Prima, A.I. & Pushkarev, A.I. A Conical Ion Diode with Self-Magnetic Insulation of Electrons. Instrum Exp Tech 62, 506–516 (2019). https://doi.org/10.1134/S0020441219030175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219030175

Navigation