Skip to main content
Log in

Application of the Method of Multiple Mutual Synchronization of Parallel Computational Threads in Spectral-Domain Optical Coherent Tomography Systems

  • APPLICATION OF COMPUTERS IN EXPERIMENTS
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—A method for multiple mutual synchronization of parallel computational threads, which is used in spectral-domain optical coherence tomography systems, is described. Due to the effective distribution of the computational load in the central processor of the control computer, the method made it possible to perform procedures for calculating tomographic slices of the subsurface tissues of a living organism in real time. The application of this method made it possible to realize the principle of multimodal optical coherence tomography and achieve significant results in a number of medical and biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., and Fujimoto, J.G., Science, 1991, vol. 254, p. 1178. https://doi.org/10.1126/science.1957169

    Article  ADS  Google Scholar 

  2. Fercher, A.F., Hitzenberger, C.K., Kamp, G., and El-Zaiat, S.Y., Opt. Commun., 1995, vol. 117, nos. 1–2, p. 43. https://doi.org/10.1016/0030-4018(95)00119-S

    Article  ADS  Google Scholar 

  3. Gelikonov, V.M., Gelikonov, G.V., and Shilyagin, P.A., Bull. Rus. Acad. Sci.: Phys., 2008, vol. 72, no. 1, pp. 93–97. https://doi.org/10.1007/s11954-008-1022-7

    Google Scholar 

  4. Gelikonov, G.V., RF Patent 2319184, 2008.

  5. Gelikonov, V.M., Gelikonov, G.V., Terpelov, D.A., and Shilyagin, P.A., Instrum. Exp. Tech., 2012, vol. 55, no. 3, pp. 392–398. https://doi.org/10.1134/S0020441212020042

    Article  Google Scholar 

  6. Terpelov, D.A., Ksenofontov, S.Yu., Gelikonov, G.V., Gelikonov, V.M., and Shilyagin, P.A., Instrum. Exp. Tech., 2017, vol. 60, no. 6, pp. 868–874. https://doi.org/10.1134/S0020441217060112

    Article  Google Scholar 

  7. Gelikonov, V.M., Kasatkina, I.V., and Shilyagin, P.A., Radiophys. Quantum Electron., 2009, vol. 52, no. 11, pp. 810–821. https://doi.org/10.1007/s11141-010-9188-x

    Article  ADS  Google Scholar 

  8. Gelikonov, V.M., Gelikonov, G.V., Kasatkina, I.V., Terpelov, D.A., and Shilyagin, P.A., Opt. Spectrosc., 2009, vol. 106, no. 6, pp. 895–900. https://doi.org/10.1134/S0030400X09060174

    Article  ADS  Google Scholar 

  9. Gelikonov, G.V., Gelikonov, V.M., and Shilyagin, P.A., Proc. SPIE, 2012, vol. 8213, no. 10, p. 82133H. https://doi.org/10.1117/12.911484

    Article  ADS  Google Scholar 

  10. Moiseev, A.A., Gelikonov, G.V., Shilyagin, P.A., and Gelikonov, V.M., Radiophys. Quantum Electron., 2013, vol. 55, nos. 10–11, pp. 654–661. https://doi.org/10.1007/s11141-013-9403-7

  11. Gelikonov, V.M., Romashov, V.N., Shabanov, D.V., Ksenofontov, S.Yu., Terpelov, D.A., Shilyagin, P.A., Gelikonov, G.V., and Vitkin, I.A., Radiophys. Quantum Electron., 2018, vol. 60, no. 11, pp. 897–911. https://doi.org/10.1007/s11141-018-9856-9

    Article  ADS  Google Scholar 

  12. Gelikonov, G.V., Moiseev, A.A., Ksenofontov, S.Y., Terpelov, D.A., and Gelikonov, V.M., Proc. SPIE, 2018, vol. 10591, p. 1059107. https://doi.org/10.1117/12.2281597

    Google Scholar 

  13. Zaitsev, V.Y., Matveyev, A.L., Matveev, L.A., Gelikonov, G.V., Omelchenko, A.I., Shabanov, D.V., Sobol, E.N., Baum, O.I., Avetisov, S.E., Bolshunov, A.V., Siplivy, V.I., and Vitkin, A., J. Biophotonics, 2017, vol. 10, no. 11, p. 1450. https://doi.org/10.1002/jbio.201600291

    Article  Google Scholar 

  14. Sirotkina, M.A., Matveev, L.A., Shirmanova, M.V., Zaitsev, V.Y., Buyanova, N.L., Elagin, V.V., Geliko-nov, G.V., Kuznetsov, S.S., Kiseleva, E.B., Moiseev, A.A., Zagaynova, E.V., Feldchtein, F.I., Vitkin, A., Gladkova, N.D., and Gamayunov, S.V., Sci. Rep., 2017, vol. 7, p. 41506. https://doi.org/10.1038/srep41506

    Article  ADS  Google Scholar 

  15. Maslennikova, A.V., Sirotkina, M.A., Moiseev, A.A., Finagina, E.S., Ksenofontov, S.Y., Gelikonov, G.V., Matveev, L.A., Kiseleva, E.B., Zaitsev, V.Y., Zagaynova, E.V., Feldchtein, F.I., Gladkova, N.D., and Vitkin, A., Sci. Rep., 2017, vol. 7, no. 1, p. 16505. https://doi.org/10.1038/s41598-017-16823-2

    Article  ADS  Google Scholar 

  16. Sirotkina, M.A., Kiseleva, E.B., Gubarkova, E.V., Matveev, L.A., Zaitsev, V.Y., Matveyev, A.L., Shirma-nova, M.V., Moiseev, A.A., Zagaynova, E.V., Vitkin, A., Gladkova, N.D., and Sovetsky, A.A., Proc. SPIE, 2017, vol. 10411, p. 104110U. https://doi.org/10.1117/12.2285170

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Research in the field of the development of parallel computing algorithms was performed within the framework of the State Job no. 0035-2014-0018 of the Institute of Applied Physics, Russian Academy of Sciences. The experimental studies on the creation of new specimens of spectral-domain OCT systems were supported by the Russian Science Foundation, project no. 17-72-20249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Ksenofontov.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, S.Y. Application of the Method of Multiple Mutual Synchronization of Parallel Computational Threads in Spectral-Domain Optical Coherent Tomography Systems. Instrum Exp Tech 62, 317–323 (2019). https://doi.org/10.1134/S0020441219030072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219030072

Navigation