Skip to main content
Log in

An Electrostatic Tandem Accelerator for an Accelerator Mass Spectrometer

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An electrostatic tandem accelerator with a 180° turn of 3+ ions inside the 1-MV terminal is the basis of the accelerator mass spectrometry (AMS) complex developed by the Budker Institute of Nuclear Physics (BINP). The accelerator is needed for acceleration and selection of ions in the range from single ions to 1 μA at a long-term high-voltage stability of better than 10–3 and the absence of high-voltage breakdowns. A description of the accelerator and experimental results are presented. As a part of the BINP AMS complex, the tandem accelerator is currently used in regular radiocarbon analyses of user samples at the Geochronology of the Cenozoic Era center of collective use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinovsky, N.I., Goncharov, A.D., Klyuev, V.F., Konstantinov, S.G., Konstantinov, E.S., Kryuchkov, A.M., Parkhomchuk, V.V., Petrichenkov, M.V., Rastigeev, S.A., and Reva, V.B., Techn. Phys., 2009, vol. 54, no. 9, p. 1350. doi 10.1134/S1063784209090151

    Article  ADS  Google Scholar 

  2. Parkhomchuk, V.V. and Rastigeev, S.A., Techn. Phys., 2009, vol. 54, no. 10, p. 1529. doi 10.1134/S1063784209100181

    Article  ADS  Google Scholar 

  3. Parkhomchuk, V.V. and Rastigeev, S.A., Phys. Particles Nuclei Lett., 2012, vol. 9, nos. 4–5, p. 406. doi 10.1134/S1547477112040279

    Article  ADS  Google Scholar 

  4. Rastigeev, S.A., Goncharov, A.D., Klyuev, V.F., Konstantinov, E.S., Kutnyakova, L.A., Parkhomchuk, V.V., Petrozhitskii, A.V., and Frolov, A.R., Phys. Particles Nuclei Lett., 2016, vol. 13, no. 7, p. 923. doi 10.1134/S1547477116070438

    Article  ADS  Google Scholar 

  5. Naylor, H., Nucl. Instrum. Methods, 1968, vol. 63, no. 1, p. 61.

    Article  ADS  MathSciNet  Google Scholar 

  6. Alinovskii, N.I., Konstantinov, E.S., Parkhomchuk, V.V., Petrozhitskii, A.V., Rastigeev, S.A., and Reva, V.B., Instrum. Exp. Tech., 2009, vol. 52, no. 2, p. 234. doi 10.1134/S0020441209020195

    Article  Google Scholar 

  7. Klyuev, V.F., Parkhomchuk, V.V., and Rastigeev, S.A., Instrum. Exp. Tech., 2009, vol. 52, no. 2, p. 245. doi 10.1134/S0020441209020225

    Article  Google Scholar 

  8. Ivanov, A. and Tiunov, M., Proc. EPAC-2002, Paris. 2002, p. 1634.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rastigeev.

Additional information

Original Russian Text © S.A. Rastigeev, V.V. Parkhomchuk, V.F. Klyuev, 2018, published in Pribory i Tekhnika Eksperimenta, 2018, No. 1, pp. 72–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastigeev, S.A., Parkhomchuk, V.V. & Klyuev, V.F. An Electrostatic Tandem Accelerator for an Accelerator Mass Spectrometer. Instrum Exp Tech 61, 79–84 (2018). https://doi.org/10.1134/S0020441218010098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441218010098

Navigation