Skip to main content
Log in

Measuring the refractive index in a wave excited in water by a laser pulse

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The problem of measuring the refractive index in a spherical wave using the Toepler method with a two-sectional photodetector is considered. A technique for determining the width and amplitude of a wave perturbation from the measured time dependence of a schlieren signal is presented. It is shown experimentally that when a water surface is irradiated with an HF-laser pulse (the pulse energy is 50 mJ, the duration is 60 ns), an elastic wave with a width of ~2 mm and an amplitude that is inversely proportional to the travelled distance is excited. The minimum recorded value of the refractive-index gradient is ~3 × 10–8 mm–1; the absolute measurement error of the refractive index is 1.5 × 10–8. The obtained sensitivity and accuracy exceed the results that were previously published. The proposed approach is characterized by the extreme simplicity of the equipment, as well as by the easiness of the experimental implementation and processing of the measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuznetsov, A., Golubev, A., Gubskii, K., and Koshkin, D., Phys. Procedia, 2015, vol. 71, p. 282. doi 10.1016/j.phpro.2015.08.316

    Article  ADS  Google Scholar 

  2. Yamamoto, S., Tagawa, Y., and Kameda, M., Exper. Fluids, 2015, vol. 56, no. 5, p. 93. doi 10.1007/s00348-015-1960-4

    Article  ADS  Google Scholar 

  3. Andreev, S.N., Kazantsev, S.Yu., Kononov, I.G., Pashinin, P.P., and Firsov, K.N., Quant. Electron., 2010, vol. 40, no. 8, p. 716.

    Article  ADS  Google Scholar 

  4. Vasiliev, L.A., Tenevoi metod (Shadow Method), Moscow: Nauka, 1968.

    Google Scholar 

  5. Zotov, S.D., Kazantsev, S.Yu., Kudryavtsev, E.M., Kuznetsov, A.A., Lebedev, A.A., and Firsov, K.N., Preprint Fiz. Inst. Akad. Nauk, 2016, no. 7.

  6. Firsov, K.N., Gavrishchuk, E.M., Kazantsev, S.Yu., Kononov, I.G., Maneshkin, A.A., Mishchenko, G.M., Nefedov, S.M., Rodin, S.A., Velikanov, S.D., Yutkin, I.M., Zaretsky, N.A., and Zotov, E.A., Laser Phys. Lett., 2014, vol. 11, no. 12, p. 125004. doi 10.1088/1612-2011/11/12/125004

    Article  ADS  Google Scholar 

  7. Fizicheskie velichiny. Spravochnik (Physical Quantities. A Handbook), Grigoriev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  8. Aksenenko, M.D. and Baranochnikov, M.L., Priemniki opticheskogo izlucheniya. Spravochnik (Receivers of Optical Radiation. A Handbook), Moscow: Radio i Svyaz’, 1987.

    Google Scholar 

  9. Babakov, M.A., Voronov, A.A., Voronova, A.A., Diduk, G.A., Dmitrieva, N.D., Kim, D.P., Menskii, B.M., and Popovich, P.N., Teoriya avtomaticheskogo upravleniya. Ch. 1. Teoriya lineinykh sistem avtomaticheskogo upravleniya (Theory of Automatic Control. Part 1. Theory of Linear Systems of Automatic Control), Voronov, A.A., Ed., Moscow: Vysshaya Shkola, 1986.

  10. Kuznetsov, A.A., Sovrem. Nauka: Aktual. Probl. Teorii Prakt. Ser. “Estestv. Tekhn. Nauki”, 2012, nos. 4–5, p. 3.

    Google Scholar 

  11. Kouder, F., Naamane, L., and Noureddine, B., Optica Applicata, 2011, vol. 41, no. 1, p. 109.

    Google Scholar 

  12. Mussil, V.V., Pilipenko, V.V., Lemeshevskaya, E.T., and Keremzhanov, K.D., Instrum. Exp. Tech., 2011, vol. 54, no. 3, p. 397. doi 10.1134/S0020441211030079

    Article  Google Scholar 

  13. Daimon, M. and Masumura, A., Appl. Optics, 2007, vol. 46, no. 18, p. 3811. doi 10.1364/AO.46.003811

    Article  ADS  Google Scholar 

  14. Abbas, B. and Alshikh Khalil, M., Acta Phys. Polon. A, 2016, vol. 129, no. 1, p. 59. doi 10.12693/APhysPolA. 129.59

    Article  Google Scholar 

  15. Suhadolnik, A., Meas. Sci. Technol., 2007, vol. 18, no. 5, p. 1205. doi 10.1088/0957-0233/18/5/006

    Article  ADS  Google Scholar 

  16. Osipov, V.V., Orlov, A.N., Kashirin, V.I., and Lisenkov, V.V., Instrum. Exp. Tech., 2013, vol. 56, no. 1, p. 80. doi 10.1134/S0020441213010107

    Article  Google Scholar 

  17. Konstantinov, V.B., Babenko, V.A. and Malyi, A.F., Prib. Tekh. Eksp., 2009, no. 1, p. 178.

    Google Scholar 

  18. Goldhahn, E. and Seume, J., Exper. Fluids, 2007, vol. 43, no. 2, p. 241. doi 10.1007/s00348-007-0331-1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuznetsov.

Additional information

Original Russian Text © S.D. Zotov, S.Yu. Kazantsev, E.M. Kudryavtsev, A.A. Kuznetsov, A.A. Lebedev, K.N. Firsov, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 6, pp. 83–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotov, S.D., Kazantsev, S.Y., Kudryavtsev, E.M. et al. Measuring the refractive index in a wave excited in water by a laser pulse. Instrum Exp Tech 60, 858–863 (2017). https://doi.org/10.1134/S0020441217050207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217050207

Navigation