Skip to main content
Log in

High-current pulse switching by thyristors triggered in the impact-ionization wave mode

  • Electronics and Radio Engineering
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The operation of a thyristor switch triggered in the impact-ionization wave mode was investigated. The switch contained two series-connected Т253-800-24 thyristors of the tablet design with a semiconductor- structure diameter of 56 mm. When a triggering pulse is applied to the switch at a voltage rise rate dU/dt of more than 1 kV/ns, the transition time of the thyristors to the conducting state was shorter than 1 ns. It was shown that the maximum amplitude of the no-failure current increases with an increase in dU/dt at the triggering stage. The possible mechanism of the influence of the dU/dt value on the thyristor breakdown current is discussed. In the safe operating mode at dU/dt = 6 kV/ns (3 kV/ns per single thyristor), the switch discharged a storage capacitor with a capacitance of 1 mF, which was charged to a voltage of 5 kV, through a resistive load of 18 mΩ. The following results were obtained: the discharge-current amplitude was 200 kA, the initial current rise rate was 58 kA/μs, the pulse duration (FWHM) was 25 μs, and the switching efficiency of 0.97.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aristov, Yu.V., Voronkov, V.B., Grekhov, I.V., Kozlov, A.K., Korotkov, S.V., and Lyublinskii, A.G., Instrum. Exp. Tech., 2007, vol. 50, no. 2, p. 224. doi 10.1134/S0020441207020091

    Article  Google Scholar 

  2. Korotkov, S.V., Aristov, Yu.V., Voronkov, V.B., Zhmodikov, A.L., Korotkov, D.A., and Lyublinskii, A.G., Instrum. Exp. Tech., 2009, vol. 52 no. 5, p. 695. doi 10.1134/S0020441209050091

    Article  Google Scholar 

  3. Grekhov, I.V., Korotkov, S.V., and Rodin, P.V., IEEE Trans. on Plasma Sci., 2008, vol. 36, no. 2, p. 378. doi 10.1109/TPS.2008.918661

    Article  ADS  Google Scholar 

  4. Grekhov, I.V., IEEE Trans. on Plasma Sci., 2010, vol. 38, no. 5, p. 1118. doi 10.1109/TPS.2010.2043857

    Article  ADS  Google Scholar 

  5. Korotkov, S.V., Aristov, Yu.V., Voronkov, V.B., and Korotkov, D.A., Instrum. Exp. Tech., 2014, vol. 57, no. 4, p. 437. doi 10.1134/S002044121404006X

    Article  Google Scholar 

  6. Gusev, A.I., Lyubutin, S.K., Rukin, S.N., and Tsyranov, S.N., Proc. 2014 IEEE Int. Power Modulator and High Voltage Conf., Santa Fe, New Mexico, USA, 2014.

    Google Scholar 

  7. Gusev, A.I., Lyubutin, S.K., Rukin, S.N., and Tsyranov, S.N., Instrum. Exp. Tech., 2015, vol. 58, no. 3, p. 376. doi 10.1134/S0020441215020189

    Article  Google Scholar 

  8. Gusev, A.I., Lyubutin, S.K., Rukin, S.N., and Tsyranov, S.N., Semiconductors, 2016, vol. 50, no. 3, p. 394. doi 10.1134/S1063782616030106

    Article  ADS  Google Scholar 

  9. Gusev, A.I., Lyubutin, S.K., Rukin, S.N., and Tsyranov, S.N., IEEE Trans. on Plasma Sci. 2016, vol. 44, no. 10, p. 1888. doi 10.1109/TPS.2016.2542343

  10. http://www.proton-electrotex.com

  11. Evseev, Yu.A. and Dermenji, P.G., Silovye poluprovodnikovye pribory (Power Semiconductor Devices), Moscow Energoizdat, 1981.

    Google Scholar 

  12. Grekhov, I.V., Zhmodikov, A.L., Korotkov, S.V., Prizhimnov, S.G., and Fomenko, Y.L., Instrum. Exp. Tech., 2016, vol. 59, no. 3, p. 351. doi 10.1134/S0020441216020202

    Article  Google Scholar 

  13. Martynenko, V., Khapugin, A., Chumakov, G., Chibirkin, V., Galakhov, I., Murugov, V., Osin, V., Kopelovich, E., and Flat, F., Kompon. Tekhnol., 2008, no. 10, p. 80.

    Google Scholar 

  14. Levinshtein, M., Kostamovaara, J., and Vainshtein, S., Breakdown Phenomena in Semiconductors and Semiconductor Devices, Singapore World Sci., 2005.

    Book  MATH  Google Scholar 

  15. Kardo-Sysoev, A.F. and Popova, M.V., Semiconductors, 1996, vol. 30, no. 5, p. 431.

    ADS  Google Scholar 

  16. Rodin, P.B., Grekhov, I.V., and Minarsky, A.M., Tech. Phys. Lett., 2012, vol. 38, no. 6, p. 535. doi 10.1134/S1063785012060144

    Article  ADS  Google Scholar 

  17. Vainshtein, S.N., Zhilyaev, Yu.V., and Levinshtein, M.E., Sov. Tech. Phys. Lett., 1988, vol. 14, no. 16, p. 664.

    Google Scholar 

  18. Gusev, A.I., Lyubutin, S.K., Rukin, S.N., and Tsyranov, S.N., Semiconductors, 2017, vol. 51, no. 5, p. 649. doi 10.1134/S1063782617050098.

    Article  ADS  Google Scholar 

  19. Korotkov, S.V., Instrum. Exp. Tech., 2002, vol. 45, no. 4, p. 437.

    Article  Google Scholar 

  20. Korotkov, S.V., Aristov, Yu.V., Zhmodikov, A.L., Kozlov, A.K., and Korotkov, D.A., Instrum. Exp. Tech., 2014, vol. 57, no. 3, p. 291. doi 10.1134/S0020441214020286

    Article  Google Scholar 

  21. http://www.elvpr.ru/poluprovodnikprib/dinistory_revers/index1.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Rukin.

Additional information

Original Russian Text © A.I. Gusev, S.K. Lyubutin, S.N. Rukin, B.G. Slovikovsky, S.N. Tsyranov, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 4, pp. 95–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.I., Lyubutin, S.K., Rukin, S.N. et al. High-current pulse switching by thyristors triggered in the impact-ionization wave mode. Instrum Exp Tech 60, 545–550 (2017). https://doi.org/10.1134/S0020441217030204

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217030204

Navigation