Skip to main content
Log in

A microwave radiometer for deep noninvasive diagnostics of thermal fields inside a biological object

  • Electronics and Radio Engineering
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A microwave radiometer for a wavelength of 10.5 cm with a frequency band of received signals of 200 MHz is described. It allows one to perform remote noninvasive temperature measurements deep in a biological object. The use of a modified null–reception method as the basis of the instrument operation made it possible to reduce the influence of the reflectance at the location of the contact between an applicator antenna and a body on the measurement accuracy and increase the dynamic characteristics during mapping of a biological object. At a storage signal time of 1 s, the measurement accuracy was 0.047 K. The output–signal changes were within 0.1 K when the reflectance was varied from 0.1 to 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyakov, V.M., Biomed. Radioelektron., 1999, no. 2, p. 39.

    Google Scholar 

  2. Filatov, A.V. and Ubaichin, A.V., Instrum. Exp. Tech., 2015, vol. 58, no. 1, p. 81. doi 10.1134/S0020441215010170

    Article  Google Scholar 

  3. Vaisblat, A.V., Biomed. Tekhnol. Radioelektron., 2001, no. 8, p. 3.

    Google Scholar 

  4. Khoperskov, A.V., Khrapov, S.S., Novochadov, V.V., and Burnos, D.V., Vestn. Volgogr. Gos. Univ., Ser. 1. Mat. Fiz., 2014, no. 6, p. 60.

    Article  Google Scholar 

  5. Asimakis, N.P., Karanasiou, I.S., and Uzunoglu, N.K., Progr. Electromagn. Res., 2011, vol. 117, p. 83.

    Article  Google Scholar 

  6. Filatov, A.V., Ubaichin, A.V., Chudinov, A.O., and Rozina, E.I., Nelinein. Mir, 2010, vol. 8, no. 4, p. 220.

    Google Scholar 

  7. Filatov, A.V., Ubaichin, A.V., and Paraev, D.E., Instrum. Exp. Tech., 2012, vol. 55, no. 1, p. 59. doi 10.1134/S0020441211060066

    Article  Google Scholar 

  8. Bobrikhin, A.F., Gudkov, A.G., Leushin, V.Yu., Los’, V.F., Porokhov, I.O., and Sidorov, I.A., Proc. 24th Int. Crimea Conf. “Microwave Engineering and Telecommunication Technologies,” Sevastopol: Veber, 2014, vol. 2, p. 1047.

    Google Scholar 

  9. Filatov, A.V., Instrum. Exp. Tech., 2014, vol. 57, no. 3, p. 300. doi 10.1134/S0020441214030063

    Article  Google Scholar 

  10. Filatov, A.V., Ubaichin, A.V., and Paraev, D.E., Izv. Uchebn. Zaved. Rossii. Radioelektronika, 2011, no. 4, p. 41.

    Google Scholar 

  11. Marechek, S.V. and Polyakov, V.M., Usp. Sovr. Radioel., 2001, no. 11, p. 21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filatov.

Additional information

Original Russian Text © A.V. Filatov, B.V. Utkin, S.E. Tarasov, S.R. Gazitov, M.N. Anishin, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 3, pp. 65–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, A.V., Utkin, B.V., Tarasov, S.E. et al. A microwave radiometer for deep noninvasive diagnostics of thermal fields inside a biological object. Instrum Exp Tech 60, 367–371 (2017). https://doi.org/10.1134/S002044121703006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044121703006X

Navigation