Skip to main content
Log in

Investigation of a LYSO crystal for a low-energy calorimeter

  • Nuclear Experimental Technique
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of studying a calorimeter cell in the low-energy region, ~50 MeV, which consists of a LYSO crystal and two avalanche photodiodes, are presented. The use of two photodiodes per crystal made it possible to perform a preliminary measurement of the calorimeter energy resolution using one calorimeter cell and cosmic muons. The coefficient of the stochastic contribution to the calorimeter energy resolution and the crystal luminescence time were measured (0.115% and 50 ns, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Djilkibaev, R. and Lobashev, V., Phys. Atom. Nucl., 2010, vol. 73, no. 12, p. 2012.

    Article  ADS  Google Scholar 

  2. Chatrchyan, S., Hmayakyan, G., Khachatryan, V., Sirunyan, A.M., Adam, W., Bauer, T., Bergauer, T., Bergauer, H., Dragicevic, M., Erö, J., Friedl, M., Frühwirth, R., Ghete, V.M., Glaser, P., Hartl, C., et al., J. Instrum., 2008, vol. 3, no. 8, p. 08004.

    Google Scholar 

  3. Aamodt, K., Arsene, I., Bravina, L., Hille, P., Kvaerno, H., Loøvhoøiden, G., Milosevic, J., Nyiri, A., Skaali, B., Tveter, T., Tywoniuk, K., Wikne, J., Zabrodin, E., Quintana, A.A., Torres, E.L., et al., J. Instrum., 2008, vol. 3, no. 8, p. 08002.

    Google Scholar 

  4. Djilkibaev, R., Heinrich, L., Mincer, A., Musso, C., Nemethy, P., Sculli, J., Toropin, A., and Zhao, L., J. Instrum., 2010, vol. 5, no. 1, p. 01003. doi 10.1088/1748- 0221/5/01/P01003

    Article  Google Scholar 

  5. PROTEUScomp. http://www.apace-science.com/proteus/lyso

  6. Thiel, M., Döring, W.M., Dormenev, V., Drexler, P., Novotny, R.W., Rost, M., and Thomas, A., IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 3, p. 1425.

    Article  ADS  Google Scholar 

  7. Mao, R., Zhang, L., and Zhu, R.Y., IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 4, p. 2425.

    Article  ADS  MathSciNet  Google Scholar 

  8. HAMAMATSU.comp. http://www.hamamatsu.com

  9. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G. et al., 2003, Nucl. Instrum. Methods Phys. Res. Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 2003, vol. 506, no. 3, p. 250.

    Article  ADS  Google Scholar 

  10. McIntyre, R.J., IEEE Trans. Electron Dev., 1972, vol. 19, no. 6, p. 703.

    Article  ADS  Google Scholar 

  11. Webb, P.P., McIntyre, R.J., and Conradi, J., Radio Corp. Am. Rev., 1974, vol. 35, p. 234.

    Google Scholar 

  12. Djilkibaev, R., Karavichev, O., Postoev, V., J. Insrum., 2015, vol. 10, no. 1, p. 01003. doi 10.1088/1748-0221/10/03/P03019

    Google Scholar 

  13. Bonifacio, D.A.B., Belcari, N., Moehrs, S., Moralles, M., Rosso, V., Vecchio, S., and El Guerra, A., IEEE Trans. Nucl. Sci., 2010, vol. 57, no. 5, p. 2483.

    Article  ADS  Google Scholar 

  14. Pepin, C.M., Berard, H., Perrot, A.L., Pepin, C., Houde, D., Lecomte, R., Melcher, C., and Dautet, H., IEEE Trans. Nucl. Sci., 2004, vol. 51, no. 3, p. 789.

    Article  ADS  Google Scholar 

  15. Chewpraditkul, W., Swederski, L., Moszynski, M., Szcczesniak, T., Sytfeld-Kazuch, A., Wanarak, C., and Limsuwan, P., IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, p. 3800.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Djilkibaev.

Additional information

Original Russian Text © R.M. Djilkibaev, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 3, pp. 28–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djilkibaev, R.M. Investigation of a LYSO crystal for a low-energy calorimeter. Instrum Exp Tech 60, 330–335 (2017). https://doi.org/10.1134/S0020441217030058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217030058

Navigation