Skip to main content
Log in

A particle-image velocimetry system for measurement of velocity flow fields for investigations of thermohydraulic processes on the large-scale benchmark of a promising fast-neutron reactor

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The use of visualization techniques in the research on thermohydraulic processes using large-scale models of nuclear power plants is discussed. In particular, the original particle-image velocimetry (PIV) measurement system at the TISEI test bench was presented, which is a model of a proposed fast-neutron reactor. Illumination and video-filming systems with the simultaneous use of several lasers and camcorders, as well as image-processing algorithms that make it possible to carry out field measurements with high precision in a complex configuration of the reactor model, reflections and distortions of the laser knife section, and shadowing by obstacles are described. The developed methodology of conversion of the image coordinates and velocity field into the reference system of the reactor model using a virtual 3D simulation made it possible to significantly simplify the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamano, H., Tanaka, M., Murakami, T., Iwamoto, Y., Yuki, K., Sago, H., and Hayakawa, S., J. Nucl. Sci. Technol., 2011, vol. 48, no. 4, p. 677. doi 10.1080/18811248.2011.9711749

    Article  Google Scholar 

  2. Bol’shukhin, M.A., Sveshnikov, D.N., Fomichev, V.I., and Znamenskaya, I.A., Optoelectron., Instrum., Data Process., 2014, vol. 50, no. 5, p. 490. doi 10.3103/S8756699014050070

    Article  Google Scholar 

  3. Jackson, J.D., Axcell, B.P., and Walton, A., Exp. Heat. Transfer., 1994, vol. 7, no. 1, p. 71. doi 10.1080/08916159408946473

    Article  ADS  Google Scholar 

  4. Vasil’ev, A.Y., Kolesnichenko, I.V., Mamykin, A.D., Frick, P.G., Khalilov, R.I., Rogozhkin, S.A., and Pakholkov, V.V., Tech. Phys. Russ. J. Appl. Phys., 2015, vol. 60, no. 9, p. 1305. doi 10.1134/S1063784215090236

    Google Scholar 

  5. Tar, D., Baranyai, G., Ezsol, Gy., and Toth, I., Proc. 8th Int. Symp. on Particle Image Velocimetry, Melbourne: Univ. Melbourne Press, 2009, p. 78.

    Google Scholar 

  6. Yamaji, B., Aszódi, A., Kovacs, M., and Csom, G., Annals of Nuclear Energy. 2014, vol. 64, p. 457. doi 10.1016/S0306454913004817

    Article  Google Scholar 

  7. Dmitriev, S.M., Khrobostov, A.E., Varentsov, A.V., Dobrov, A.A., Doronkov, D.V., Sorokin, V.D., and Samoilov, O.B., Therm. Eng., 2014, vol. 61, no. 8, p. 558. doi 10.1134/S0040601514080059

    Article  ADS  Google Scholar 

  8. Kolesova, Yu.A., Masalov, D.G., Osipov, S.L., Pakholkov, V.V., Rogozhkin, S.A., and Shepelev, S.F., Proc. Sci.-Tech. Conf. “Thermophysics-2012,” Obnibsk: FEI, 2012, p. 209.

    Google Scholar 

  9. Rust, K., Weinberg, D., Hoffmann, H., and Frey, H.H., Summary Report of NEPTUN Investigations into the Steady State Thermal Hydraulics of the Passive Decay Heat Removal, FZKA-5665. Forschungszentrum Karlsruhe, 1995, p. 56. https://inis.iaea.org/search/search.aspx?orig_q=RN:27036703

    Google Scholar 

  10. Wilhelm, D., Hansen, G., and Strotmann, H., Trans. of the Int. Conf. on Design and Safety of Advanced Nuclear Power Plants, Tokyo, 1992, vol. 3. https://inis.iaea.org/search/search.aspx?orig_q=RN:24075413

  11. Rogozhkin, S.A., Osipov, S.L., Fadeev, I.D., Shepelev, S.F., Aksenov, A.A., Zhluktov, S.V., Sazonova, M.L., and Shmelev, V.F., Atomic Energy, 2013, vol. 115, no. 5, p. 357.

    Article  Google Scholar 

  12. Zaryugin, D.G., Poplavskii, V.M., Rachkov, V.I., Sorokin, A.P., Shvetsov, Yu.E., Rogozhkin, S.A., and Shepelev, S.F., Atomic Energy, 2014, vol. 116, no. 4, p. 271.

    Article  Google Scholar 

  13. Raffel, M., Willert, C.E., Wereley, A.T., and Kompenhans, J., Particle Image Velocimetry: a Practical Guide, Heidelberg: Springer-Verlag, 1998, p. 448.

    Google Scholar 

  14. Sergeev, D.A., Instrum. Exp. Tech., 2009, vol. 52, no. 3, p. 438. doi 10.1134/S0020441209030257

    Article  Google Scholar 

  15. Bolinder, J., Technical ReportL Lund Institute of Technology ISSN 0282-1990, 1999, p. 25. http://www.lavision.de/en/downloads/publications/particle-imaging. php

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sergeev.

Additional information

Original Russian Text © D.A. Sergeev, A.A. Kandaurov, Yu.I. Troitskaya, V.V. Pakholkov, S.A. Rogozhkin, S.F. Shepelev, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 3, pp. 119–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, D.A., Kandaurov, A.A., Troitskaya, Y.I. et al. A particle-image velocimetry system for measurement of velocity flow fields for investigations of thermohydraulic processes on the large-scale benchmark of a promising fast-neutron reactor. Instrum Exp Tech 60, 418–427 (2017). https://doi.org/10.1134/S0020441217020233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217020233

Navigation