Skip to main content
Log in

Application of Jamin interferometer for the determination of thin transparent polymer films thickness in the visible range

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Modification of the technique for thickness determination of thin polymer films that are transparent in the visible range with the application of Jamin interferometer is suggested. The films are deposited on glass substrate. The technique is based on measuring the relative shift of interference fringes. The distinguishing feature of the approach is the use of three beams, one of which participates in the formation of the reference signal; the interference-fringe shift is estimated by the analysis of brightness curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalton, L.R., Harper, A.W., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M., Ind. Eng. Chem. Res., 1999, vol. 38, no. 1, p. 8. doi 10.1021/ie9705970

    Article  Google Scholar 

  2. Dalton, L.R., Sullivan, P.A., and Bale, D.H., Chem. Rev., 2010, vol. 110, no. 1, p. 25. doi 10.1021/cr9000429

    Article  Google Scholar 

  3. Dalton, L.R., Nonlinear optical polymeric materials: From chromophore design to commercial applications, in Advances in Polymer Science, vol. 158. Polymers for Photonics Applications I, Lee, K.-S., Ed., Berlin: Springer-Verlag, 2002, pp. 1–86.

    Google Scholar 

  4. Burland, D.M., Miller, R.D., and Walsh, C.A., Chem. Rev., 1994, vol. 94, no. 1, p. 31. doi 10.1021/cr00025a002

    Article  Google Scholar 

  5. Serova, V.N., Optical and Other Transparent-based Polymers, Kazan’ Kaz. Gos. Tekhn. Univ., 2010.

    Google Scholar 

  6. Kuo, W.-K. and Tung, Y.-C., Piers Online, 2009, vol. 5, no. 1, p. 41.

    Article  Google Scholar 

  7. Chyou, J.-J., Chu, C.-S., Shih, C.-H., Lin, C.-Y., Huang, K.-T., Chen, S.-J., and Shu, S.-F., Progress im Biomed. Optics and Imaging, 2003, vol. 5221, p. 197. doi doi 10.1117/12.505525

    Google Scholar 

  8. Letsche, S., Jacobs, P., Pluntke, M., Trankle, S., Gong, H., Marti, O., Mahlmann, D.M., Loosen, P., and Volkmer, D., Thin Solid Films, 2011, vol. 519, no. 22, p. 8100, http://dx.doi.org/doi10.1016/j.tsf. 2011.05.045.

    Article  ADS  Google Scholar 

  9. Azzam, R.A.M. and Bashara, N.M., Ellipsometry and Polarized Light, NewYork: North-Holland, 1977, ?. 558.

    Google Scholar 

  10. Toussaere, E. and Zyss, J., Thin Solid Films, 1993, vol. 234, nos. 1–2, p. 432. doi 10.1016/0040-6090(93) 90301-5

    Article  ADS  Google Scholar 

  11. Al-Mabasnech, A.A., Al-Attar, X.A., and Shain, I.S., Optics Communication, 2003, vol. 220, nos. 1–3, p. 129. http://dx.doi.org/doi 10.1016/S0030-4018(03)01349-X

    Article  ADS  Google Scholar 

  12. Wu., C.C., Analytica Chemica Acta, 2004, vol. 505, no. 2, p. 239. http://dx. doi.org/doi 10.1016/j.aca. 2003.10.073

    Article  Google Scholar 

  13. Frammelsberger, W., Benstetter, G., Kiely, J., and Stamp, R., Appl. Surf. Sci., 2006, vol. 252, no. 6, p. 2375. http://dx.doi.org/doi10.1016/j.apsusc. 2005.04.010

    Article  ADS  Google Scholar 

  14. Karaaliolu, C. and Skarlatos, Y., Optics Communication, 2004, vol. 234, nos. 1–6, p. 269. http://dx.doi. org/doi 10.1016/j.optcom.2004.02.025

    Article  ADS  Google Scholar 

  15. Landsberg, G.S., Optics, Moscow Fizmatlit, 2003.

    Google Scholar 

  16. Kuzyk, M.G. and Dirk, K.W., Characterization Techniques and Tabulations for Organic Nonlinear Optical for Organic Nonlinear Optical Materials, Marcel Dekker, 1998.

    Google Scholar 

  17. Vakhonina, T.A., Ivanova, N.V., Smirnov, N.N., Yakimansky, A.V., Balakina, M.Yu., and Sinyashin, O.G., Mendeleev Commun., 2014, vol. 24, no. 3, p. 138. doi 10.1016/j.mencom.2014.04.002

    Article  Google Scholar 

  18. Vakhonina, T.A., Balakina, M.Yu., Ivanova, N.V., Nazmieva, G.N., Kurmaz, S.V., Kochneva, I.S., Bubnova, M.L., Perepelitsyna, E.O., Smirnov, N.N., Yakimansky, A.V., and Sinyashin, O.G., Europ. Pol. J., 2014, vol. 50, no. 1, p. 158. http://dx.doi.org/doi 10.1016/j.eurpolymj.2013.10.020

    Article  Google Scholar 

  19. Vakhonina, T.A., Sharipova, S.M., Ivanova, N.V., Fominykh, O.D., Smirnov, N.N., Yakimansky, A.V., and Balakina, M.Y., Proc. of SPIE, ICONO 2010: Int. Conf. Coher. Nonlin. Optics, 2011, vol. 7993, p. 799307-1. doi 10.1117/12.88094410.1117/12.880944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Smirnov.

Additional information

Original Russian Text © A.S. Mukhtarov, M.A. Smirnov, T.A. Vakhonina, M.Yu. Balakina, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 3, pp. 140–144.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhtarov, A.S., Smirnov, M.A., Vakhonina, T.A. et al. Application of Jamin interferometer for the determination of thin transparent polymer films thickness in the visible range. Instrum Exp Tech 60, 439–443 (2017). https://doi.org/10.1134/S0020441217020191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217020191

Navigation