Skip to main content
Log in

Laser equipment for hardness evaluation of semiconductor elements exposed to heavy charged particles (Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A review of laser devices that are currently used to perform hardness evaluation of microelectronic devices that are exposed to heavy charged particles, with respect to local radiation effects is presented. A brief classification of ionization effects in semiconductors caused by single heavy charged particles is provided. The possibility of using focused pulse-laser radiation for research on these effects is validated. A general approach to the construction of test systems that are based on picosecond lasers with sharp beam focusing systems is presented. The technical requirements for the basic modules of such systems are substantiated. The parameters of the domestic PICO-3 and PICO-4 laser test devices are compared to their foreign analogues and the means of their further improvement are given. The technical and operational characteristics of these devices that allow them to be used in various research tasks that require selective (with a submicron spatial resolution) object excitation by ultrashort laser pulses and recording of its response with exact timing of the moment of excitation, as well as for various precise technological operations, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chumakov, A.I., Deistvie kosmicheskoi radiatsii na integral’nye skhemy (Influence of Cosmic Radiation on Integrated Circuits), Moscow: Radio i Svyaz’, 2004.

    Google Scholar 

  2. Barth, J.L., Dyer, C.S., and Stassinopoulos, E.G., IEEE Trans. Nucl. Sci., 2003, vol. 50, p. 466.

    Article  ADS  Google Scholar 

  3. Ioniziruyushchie izlucheniya kosmicheskogo prostranstva i ikh vozdeistvie na bortovuyu apparaturu kosmicheskikh apparatov (Ionizing Radiations of Cosmic Space and Their Influence on on-Board Equipment of Space Vehicles), Raikunov, G.G., Ed., Moscow: Fizmatlit, 2013.

  4. Dausingera, F., Hugela, H., and Konov, V., Proc. SPIE. ALT'02 Int. Conf. Advanced Laser Technol., 2003, vol. 5147, p. 106.

    ADS  Google Scholar 

  5. Egorov, A.N., Mavritskii, O.B., Chumakov, A.I., Nikiforov, A.Yu., Telets, V.A., Pechenkin, A.A., Yanenko, A.V., Kol’tsov, D.O., and Savchenkov, D.V., Spetstekhn. Svyaz’, 2011, nos. 4–5, p. 8.

    Google Scholar 

  6. Chumakov, A.I., Russ. Microelectron., 2011, vol. 40, no. 3, p. 149. doi 10.1134/S1063739711030036

    Article  Google Scholar 

  7. Chumakov, A.I., Vasil’ev, A.L., Pechenkin, A.A., Savchenkov, D.V., Tararaksin, A.S., and Yanenko, A.V., Russ. Microelectron., 2012, vol. 41, no. 4, p. 221. doi 10.1134/S1063739712040051

    Article  Google Scholar 

  8. Kastensmidt, F.L., Tambara, L., Bobrovskiy, D.V., Pechenkin, A.A., and Nikiforov, A.Y., IEEE Trans. Nucl. Sci., 2014, vol. 61, no. 6, p. 3130. doi 10.1109/TNS.2014.2369008

    Article  ADS  Google Scholar 

  9. Telets, V.A., Nikiforov, A.Yu., and Chumakov, A.I., Vopr. At. Nauki Tekhn. Ser. Fiz. Radiats. Vozd. na REA, 1996, nos. 1–3, p. 6.

    Google Scholar 

  10. Kurbangaeev, V., Poroshin, N., Malyshev, P., and Shmelin, P., Fotonika, 2012, no. 2, p. 74.

    Google Scholar 

  11. Mavritskii, O.B., Egorov, A.N., Nastulyavichus, A.A., Chumakov, A.I., Pechenkin, A.A., and Smirnov, N.A., Phys. Procedia, 2015, vol. 73, p. 183. doi 10.1016/j.phpro.2015.09.152

    Article  ADS  Google Scholar 

  12. McMorrow, D., Lotshaw, W.T., Melinger, J.S., Buchner, S., and Pease, R.L., IEEE Trans. Nucl. Sci., 2002, vol. 49, p. 3002. doi 10. 1109/TNS.2002.805337

    Article  ADS  Google Scholar 

  13. Soft Errors in Modern Electronic Systems, in Ser. Frontiers in Electronic Testing, Nicolaidis, M., Ed., Springer Science + Business Media, 2011, vol. 41, p. 21. doi 10.1007/978-1-4419-6993-4_2

  14. Buchner, S.P., Wilson, D., Kang, K., Gill, D., Mazer, J.A., Raburn, W.D., Campbell, A.B., and Knudson, A.R., IEEE Trans. Nucl. Sci., 1987, vol. NS-34, no. 6, p. 1228. doi doi 0.1109/TNS.1987.4337457

    ADS  Google Scholar 

  15. Astvatsatur’yan, E.R., Belyanov, A.A., Eliseev, K.G., Kalashnikov, O.A., Kurnaev, S.A., and Chumakov, A.I., Prib. Tekh. Eksp., 1993, no. 1, p. 123.

    Google Scholar 

  16. Binder, D., Smith, E.C., and Holman, A.B., IEEE Trans. Nucl. Sci., 1975, vol. 22, p. 2675. doi 10.1109/TNS.1975.4328188

    Article  ADS  Google Scholar 

  17. Wilson, T. and McCabe, E.M., J. Appl. Phys., 1987, vol. 61, p. 191. doi 10.1063/1.338853

    Article  ADS  Google Scholar 

  18. Buchner, S.P., IEEE Trans. Nucl. Sci., 2013, vol. 60, no. 3, p. 1852. doi 10.1109/TNS.2013.2255312

    Article  ADS  Google Scholar 

  19. Martin-Barbero, S., Hoffgen, S.K., Berger, G., and Guerrero, H., Proc. Thematic day in RADECS-2011 “Compend. Int. Irrad. Test Facil.,” Sevilla, Spain, 2011.

    Google Scholar 

  20. Melinger, J.S., Buchner, S., McMorrow, D., Stapor, W.J., Weatherford, T.R., and Campbell, A.B., IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, p. 2574. doi 10.1109/23.340618

    Article  ADS  Google Scholar 

  21. Jones, R., Chugg, A.M., Jones, C.M.S., Duncan, P.H., Dyer, C.S., and Sanderson, C., IEEE Trans. Nucl. Sci., 2000, vol. 47, no. 3, p. 539. doi doi 10.1109/23.856477

    Article  ADS  Google Scholar 

  22. Yang Shiyu, Cao Zhou, Li Danming, Xue Yuxiong, and Tian Kai, J. Semicond., 2009, vol. 30, p. 064009. doi 10.1088/1674-4926/30/6/064009

    Article  Google Scholar 

  23. Pellish, J.A., Reed, R.A., McMorrow, D., Melinger, J.S., Jenkins, P., Sutton, A.K., Diestelhorst, R.M., Phillips, S.D., Cressler, J.D., Pouget, V., Pate, N.D., Kozub, J.A., Mendenhall, M.H., Weller, R.A., Schrimpf, et al., IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 6, p. 2936. doi 10.1109/TNS.2008.2007954

    Article  ADS  Google Scholar 

  24. Park, H., Cummings, D.J., Arora, R., Pellish, J.A., Reed, R.A., Schrimpf, R.D., McMorrow, D., Armstrong, S.E., Roh, U., Nishida, T., Law, M.E., and Thompson, S.E., IEEE Trans. Nucl. Sci., 2009, vol. 56, p. 3203. doi doi 10.1109/TNS.2009.2033361

    Article  ADS  Google Scholar 

  25. Mavritskii, O.B. and Petrovskii, A.N., Quantum Electron., 1987, vol. 14, no. 7, p. 874.

    ADS  Google Scholar 

  26. Fouillat, P., Pouget, V., McMorrow, D., Darracq, F., Buchner, S., and Lewis, D., Radiation Effects on Embedded Systems, Springer, 2007, p. 121. doi 10.1007/978-1-4020-5646-8_6

    Book  Google Scholar 

  27. Miller, F., Buard, N., Carriere, T., Dufayel, R., Gaillard, R., Poirot, P., Palau, J.-M., Sagnes, B., and Fouillat, P., IEEE Trans. Nucl. Sci., 2004, vol. 51, no. 6, p. 3708. doi 10.1109/TNS.2004.839261

    Article  ADS  Google Scholar 

  28. Chumakov, A.I., Pechenkin, A.A., Savchenkov, D.V., Tararaksin, A.S., Vasil’ev, A., and Yanenko, A.V., Proc. Conf. Radiation and Its Effects on Components and Systems RADECS-2011, 2011, p. 449. doi 10.1109/RADECS.2011.6131420

    Book  Google Scholar 

  29. Gordienko, A.V., Egorov, A.N., Mavritskii, O.B., and Pechenkin, A.A., 7-ya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Radiatsionnaya stoikost' elektronnykh sistem.” (Stoikost’-2014) (Proc. 7th All-Russ. Sci.-Tech. Conf. “Radiation Stability of Electronic Systems.” (Stability-2014)), Lytkarino, FGUP NIIP, 2014, p. 132.

    Google Scholar 

  30. Tabata, O. and Sugano, K., J. Micromech. Microeng., 2002, vol. 12, p. 911.

    Article  Google Scholar 

  31. Douin, A., Pouget, V., Darracq, F., Lewis, D., Fouillat, P., and Perdu, P., IEEE Trans. Nucl. Sci., 2006, vol. 53, no. 4, p. 1799. doi 10.1109/TNS.2006.880939

    Article  ADS  Google Scholar 

  32. Chugg, A.M., Jones, R., Moutrie, M.J., Duncan, P.H., Sorensen, R.H., Mattsson, S., Larsson, S., Fitzgerald, R., and O’Shea, T., IEEE Trans. Nucl. Sci., 2005, vol. 52, p. 2487. doi 10.1109/TNS.2005.860721

    Article  ADS  Google Scholar 

  33. Tien, A., Backus, S., Kapteyn, H., Murnane, M., and Mourou, G., Phys. Rev. Lett., 1999, vol. 82, p. 3883.

    Article  ADS  Google Scholar 

  34. Bougerol, A., Miller, F., Guibbaud, N., Gaillard, R., Moliere, F., and Buard, N., IEEE Trans. Nucl. Sci., 2010, vol. 57, no. 1, p. 272. doi 10.1109/TNS.2009. 2037418

    Article  ADS  Google Scholar 

  35. Moukhtari, I.E., Pouget, V., Larue, C., Darracq, F., Lewis, D., and Perd., Ph., Microelectron. Reliab., 2013, vol. 53, p. 1325. doi doi 10.1016/j.microrel.2013.07.129

    Article  Google Scholar 

  36. Pouget, V., Lewis, D., and Fouillat, P., Instrum. Measur., 2004, vol. 53, no. 4, p. 1227. doi 10.1109/TIM.2004.831488

    Article  Google Scholar 

  37. Laird, J.S., Chen, Y., Vo, T., Edmonds, L., Scheick, L., and Adell, P., IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 1, p. 220. doi 10.1109/TNS.2008.2010939

    Article  ADS  Google Scholar 

  38. McMorrow, D., Buchner, S., Baze, M., Bartholet, B., Katz, R., O’Bryan, M., Poivey, C., LaBel, K.A., Ladbury, R., Maher, M., and Sexton, F.W., IEEE Trans. Nucl. Sci., 2006, vol. 53, no. 4, p. 1819. doi 10.1109/TNS.2006.880929

    Article  ADS  Google Scholar 

  39. Cardoza, D.M., LaLumondiere, S.D., Tockstein, M.A., Witczak, S.C., Sin, Y., Foran, B.J., Lotshaw, W.T., and Moss, S.C., IEEE Trans. Nucl. Sci., 2012, vol. 59, p. 2729. doi 10.1109/TNS.2012.2224130

    Article  ADS  Google Scholar 

  40. Shao, K., Pouget, V., Faraud, E., Larue, C., McMorrow, D., and Lewis, D., Optics Express, 2011, vol. 19, p. 22594. doi 10.1364/OE.19.022594

    Article  ADS  Google Scholar 

  41. Firester, A.H., Heller, M.E., and Sheng, P., Appl. Opt., 1977, vol. 16, no. 7, p. 1971. doi 10.1364/AO.16.001971

    Article  ADS  Google Scholar 

  42. Lewis, D., Pouget, V., Beaudoin, F., Perdu, P., Lapuyade, H., Fouillat, P., and Touboul, A., IEEE Trans. Nucl. Sci., 2001, vol. 48, p. 2193. doi 10.1109/23.983195

    Article  ADS  Google Scholar 

  43. Loskutov, I.O., Karakozov, A.B., Nekrasov, P.V., and Nikiforov, A.Yu., Proc. Int. Siber. Conf. on Control Commun. (SIBCON-2015), Omsk: The Tomsk IEEE Chapter Student Branch, 2015, p. 7147128. doi 10.1109/SIBCON. 2015.7147128

    Google Scholar 

  44. Boruzdina, A.B., Orlov, A.A., Ulanova, A.V., Grigor’ev, N.G., and Nikiforov, A.Y., Proc. Int. Siber. Conf. Control Commun. (SIBCON-2015), Omsk: The Tomsk IEEE Chapter Student Branch, 2015, p. 7147007. doi 10.1109/SIBCON.2015.7147007

    Google Scholar 

  45. Egorov, A.N., Mavritskii, O.B., Chumakov, A.I., Nikiforov, A.Yu., Pechenkin, A.A., and Yanenko, A.V., RF Patent 110488, Byull. Izobret., 2011, no. 32.

    Google Scholar 

  46. Yanenko, A.V., Chumakov, A.I., Pechenkin, A.A., Savchenkov, D.V., Tararaksin, A.S., and Vasil’ev, A.L., Spetstekhn. Svyaz’, 2011, nos. 4–5, p. 4.

    Google Scholar 

  47. Savchenkov, D.V., Chumakov, A.I., Petrov, A.G., Pechenkin, A.A., Egorov, A.N., Mavritskiy, O.B., and Yanenko, A.V., Proc. RADECS-2013, Oxford, UK, 2013, vol. PE-1, p. 1. doi 10.1109/RADECS. 2013.6937411

    Google Scholar 

  48. Chumakov, A.I., Pechenkin, A.A., Savchenkov, D.V., Yanenko, A.V., Kessarinsky, L.N., Nekrasov, P.V., Sogoyan, A.V., Tararaksin, A.I., Vasil’ev, A.L., Anashin, V.S., and Chubunov, P.V., Proc. RADECS-2013, Oxford, UK, 2013, vol. DW-1, p. 1. doi 10.1109/RADECS.2013.6937390

    Google Scholar 

  49. Gordienko, A.V., Mavritskii, O.B., Egorov, A.N., Pechenkin, A.A., and Savchenkov, D.V., Quantum Electron., 2014, vol. 44, no. 12, p. 1173. doi 10.1070/QE2014v044n12ABEH015519

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Mavritskii.

Additional information

Original Russian Text © O.B. Mavritskii, A.I. Chumakov, A.N. Egorov, A.A. Pechenkin, A.Yu. Nikiforov, 2016, published in Pribory i Tekhnika Eksperimenta, 2016, No. 5, pp. 5–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavritskii, O.B., Chumakov, A.I., Egorov, A.N. et al. Laser equipment for hardness evaluation of semiconductor elements exposed to heavy charged particles (Review). Instrum Exp Tech 59, 627–649 (2016). https://doi.org/10.1134/S0020441216050122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216050122

Navigation