Skip to main content
Log in

High-efficiency thermoluminescent detectors for measuring the absorbed ionizing radiation dose in the environment

  • Physical Instruments for Ecology, Medicine, and Biology
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A study has been conducted with the goal of comparing the characteristics of TLD-K detectors based on sodium silicate ceramics to the characteristics of monocrystalline lithium fluoride detectors that contain traces of titanium and magnesium (TLD-100), as well as anion-defected aluminum oxide (TLD-500), which are widely used in thermoluminescent dosimetry. Because they are soil-equivalent, SiO2 detectors are well suited for measuring the absorbed radiation dose in soils. The results of the comparison indicate that TLD-K detectors are preferable to LiF detectors in environmental applications due to the better uniformity of the detector sensitivity in a batch, the wider range of measurable doses, and the lower threshold in determining small doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shvarts, K.K., Kristapson, Ya.Zh., Lusis, D.Yu., and Podin’, A.V., Lithium fluoride: Optical properties and application in thermoluminescent dosimetry, in Radiatsionnaya fizika. Vyp. 5 (Radiation Physics, No. 5), Riga: Zinatne, 1967, pp. 179–235.

    Google Scholar 

  2. Fominykh, V.I. and Oborin, F.V., Izotopy v SSSR, 1982, no. 1, p. 12.

    Google Scholar 

  3. Nepomnyashchikh, A.P., Radzhabov, E.L., and Egranov, A.V., Tsentry okraski i lyuminestsentsiya kristallov LiF (Color Centers and Luminescence of LiF Crystals), Novosibirsk: Nauka, 1984.

    Google Scholar 

  4. McKeever, S.W.S., Moscovitch, M., and Townsend, P.D., Thermoluminescence Dosimetry Materials: Properties and Uses, Ashford: Nuclear Technology, 1995.

    Google Scholar 

  5. Kortov, V.S., Mil’man, I.I., and Nikiforov, S.V., Fiz. Tverd. Tela, 1997, vol. 39, no. 9, p. 1369.

    Google Scholar 

  6. Bochvar, I.A., Gimadova, T.I., Keirim-Markus, I.B., Kushnerev, A.Ya., and Yakubik, V.V., Metod dozimetrii IKS (Method of IRSpectroscopy Dosimentry), Moscow: Atomizdat, 1977.

    Google Scholar 

  7. Aluker, N.L., Artamonov, A.S., Bakulin, Yu.P., Danilevich, E.N., Krysanova, O.L., Riskina, R.V., and Sogoyan, A.V., Vopr. At. Nauki Tekhn., Ser.: Fiz. Radiats. Vozd. Radioelektron. Apparat., 2006, nos. 3–4, p. 86.

    Google Scholar 

  8. Aluker, N. and Aluker, V., Proc. 10th Int. Conf. Solid State Dosimetry Ashford, Kent: Nucl. Technol., 1992, no. 7, p. 39.

    Google Scholar 

  9. Aluker, N.L. and Aluker, E.D., RF Patent 2108598, 1998. http://www.findpatent.ru/patent/210/2108598. html

    Google Scholar 

  10. Eger, R., Dozimetriya i zashchita ot izluchenii (fizicheskie i tekhnicheskie konstanty), (Dosimetry and Radiation Protection (Physical and Technical Constants), Moscow: Atomizdat, 1961.

    Google Scholar 

  11. Aluker, N.L. and Yagodina, E.V., Use of thermoluminescent detectors for study of distribution of absorbed doses at patient X-ray study conduction, in Sovremennye problemy khimicheskoi i radiatsionnoi fiziki (Contemporary Problems of Chemical and Radiation Physics), Moscow: Chernogolovka, 2009, pp. 299–303.

    Google Scholar 

  12. Shaver, I.Kh., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: SPb Gos. Univ., 1976.

    Google Scholar 

  13. Aksel’rod, M.S., Kortov, V.S., Mil’man, I.I., Gorelova, E.A., Borisov, A.A., Zatulovskii, L.M., Kraevetskii, D.Ya., Berezina, I.E., and Lebedev, N.K., Izv. Akad. Nauk SSSR, Ser. Fiz., 1988, vol. 52, no. 10, p. 1981.

    Google Scholar 

  14. Vakhidov, Sh.A., Gasanov, E.M., Samoilovich, M.I., and Yarkulov, U., Radiatsionnye effekty v kvartse (Radiation Effects in Quartz), Vakhidov, Sh.A., Ed., Tashkent: Fan, 1975.

    Google Scholar 

  15. Marfunin, A.S., Spektroskopiya, lyuminestsentsiya i radiatsionnye tsentry v mineralakh (Spectroscopy, Luminescence and Radiation Centers in Minerals), Moscow: Nedra, 1975.

    Google Scholar 

  16. Komarov., Ya.M., Aluker, N.L., Bobrov, V.V., and Sorokina, N.V., Inorg. Mater., 2011, vol. 47, no. 5, p. 544.

    Article  Google Scholar 

  17. Aluker, N.L., Suzdal’tseva, Ya.M., and Chernov, A.N., Geolog. Mineral.-syr’ev. Resursy Sibiri, 2014, no. 4, p. 29.

    Google Scholar 

  18. Aluker, N.L., Bobrov, Ya.M., and Suzdal’tseva, Ya.M., Inorg. Mater., 2015, vol. 51, no. 2, p. 182.

    Article  Google Scholar 

  19. Aluker, E.D., Kucheruk, E.V., and Petukhov, A.V., in Itogi nauki i tekhniki. Seriya Geokhimiya. Mineralogiya. Petrografiya (Resume of Science and Tech. Ser. Geochem., Mineral., Petrograph.), vol. 16, Moscow: VINITI, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aluker.

Additional information

Original Russian Text © N.L. Aluker, J.M. Suzdaltseva, M. Herrmann, A.C. Dulepova, 2016, published in Pribory i Tekhnika Eksperimenta, 2016, No. 5, pp. 115–122.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aluker, N.L., Suzdaltseva, J.M., Herrmann, M. et al. High-efficiency thermoluminescent detectors for measuring the absorbed ionizing radiation dose in the environment. Instrum Exp Tech 59, 733–739 (2016). https://doi.org/10.1134/S002044121605002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044121605002X

Navigation