Skip to main content
Log in

Investigation of the homogeneity of a high-power ion beam formed by a diode with a closed electron drift

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of an investigation of the energy-density distribution over the cross section of a pulsed ion beam formed with a passive-anode diode in the mode of magnetic insulation and a closed electron drift in the anode–cathode gap are presented. Diodes of two types are studied: with external magnetic insulation (B r diode) on the BIPPAB-450 accelerator (400 kV, 80 ns) and self-magnetic insulation of electrons (spiral diode) on the TEMP-4M accelerator (250 kV, 120 ns). In the investigated diodes, various processes are used to form anode plasma: a breakdown over the surface of a dielectric coating on the anode and ionization of the anode surface with accelerated electrons (B r diode), as well as explosive emission of electrons (spiral diode). To analyze the ion-beam energy density, thermal-imaging diagnostics is used with a spatial resolution of 1–2 mm. The energy-density is calculated from the one-dimensional Child–Langmuir relationship. It is shown that a continuous plasma layer is efficiently formed on the working anode surface for all the investigated diodes. The anode-plasma concentration is rather high, and the beam-energy density is limited by the space charge of ions, but not by the plasma concentration. It is found that, when the magnetic field in the Br-diode anode–cathode gap decreases or the electron current in the spiral diode increases, the energy density of the high-power ion beam rises significantly, but the beam homogeneity decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boiko, V.I., Skvortsov, V.A., Fortov, V.E., and Shamanin, I.V., Vzaimodeistvie impul’snykh puchkov zaryazhennykh chastits s veshchestvom (Charged Particle Pulsed-Beam Interaction with Matter), Moscow: Fizmatlit, 2003.

    Google Scholar 

  2. Pushkarev, A.I., Isakova, Y.I., Xailov, I.P., and Zhong, H., Rev. Sci. Instrum., 2015, vol. 86, p. 073305. doi 10.1063/1/4926564

    Article  ADS  Google Scholar 

  3. Hegeler, F., Friedman, M., Myers, M.C., Sethian, J.D., and Swanekamp, S.B., Phys. Plasmas, 2002, vol. 9, p. 4309. doi 10.1063/1/1.1506925

    Article  ADS  Google Scholar 

  4. Pushkarev, A.I., Isakova, Yu.I., Sazonov, R.V., and Kholodnaya, G.E., Generatsiya puchkov zaryazhennykh chastits v diodakh so vzryvoemissionnym katodom (Charged Particle Beam Generation in Diodes with a Explosive-Emission Cathode), Moscow: Fizmatlit, 2013.

    Google Scholar 

  5. Xiang, W., Zhao, W.J., Yan, S., and Zeng, B.Q., Rev. Sci. Instrum., 2002, vol. 73, no. 2, p. 857. doi 10.1063/1.1427354

    Article  ADS  Google Scholar 

  6. Bystritskii, V.M., Didenko, A.N., Krasik, Ya.E., and Matvienko, V.M., Sov. J. Plasma Phys., 1985, vol. 11, no. 9, p. 602.

    Google Scholar 

  7. Bistritsky, V.M., Didenko, A.N., Krasik, Ya.E., and Matvienko, V.M., Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. Atoms, 1986, vol. 17, no. 2, p. 182. doi 10.1016/0168-583X(86)90084-4

    Article  ADS  Google Scholar 

  8. Kazuhito Yasuik., Shuji Miyamoto, and Sadao Nakai, Rev. Sci. Instrum., 1996, vol. 67, p. 437. doi S0034-6748(96)04-001-7

    Article  Google Scholar 

  9. Davis, H.A., Bartsch, R.R., Olson, J.C., Rej, D.J., and Waganaar, W.J., J. Appl. Phys., 1997, vol. 82, no. 7, p. 3223. doi S0021-8979(97)05419-4

    Article  ADS  Google Scholar 

  10. Xiao, Yu., Jie, Shen., Miao, Qu., Wenbin, Liu., Haowen, Zhong., Jie, Zhang., Yanyan, Zhang., Sha, Yan., Gaolong, Zhang., Xiaofu, Zhang., and Xiaoyun, Le., Vacuum, 2015, vol. 113, p. 36. http://dx.doi.org/doi 10.1016/j.vacuum.2014.12.003

    Article  Google Scholar 

  11. Isakova, Yu.I. and Pushkarev, A.I., Instrum. Exp. Tech., 2013, vol. 56, no. 2, p. 185. doi 10.1134/S0020441213020085

    Article  Google Scholar 

  12. Pushkarev, A.I. and Isakova, Yu.I., Laser Part. Beams, 2012, vol. 30, no. 3, p. 427. doi 10.1017/S0263034612000316

    Article  ADS  Google Scholar 

  13. Isakova, Yu.I., Pushkarev, A.I., and Tarbokov, V.A., Izv. Tomsk. Politekhn. Univ., 2010, vol. 316, no. 2, p. 76.

    Google Scholar 

  14. Lopatin, V.S., Remnev, G.E., Furman, E.G., Makeev, V.A., and Stepanov, A.V., Instrum. Exp. Tech., 2004, vol. 47, no. 4, p. 484. doi 10.1023/B:INET.0000038393. 20778.4d

    Article  Google Scholar 

  15. Pushkarev, A., Physics of Plasmas, 2015, vol. 22, no. 10, p. 103106. doi 10.1063/1.4933215

    Article  ADS  Google Scholar 

  16. Langmuir, I., Phys. Rev., 1913, vol. 2, p. 45.

    ADS  Google Scholar 

  17. Zhu, X.P., Dong, Z.H., Han, X.G., Xin, J.P., and Lei, M.K., Rev. Sci. Instrum., 2007, vol. 78, p. 023301. http://dx.doi.org/doi10.1063/1.2437760

    Article  ADS  Google Scholar 

  18. Pushkarev, A.I., Isakova, Yu.I., and Khailov, I.P., Laser Part. Beams, 2013, vol. 31, no. 3, p. 493. doi 10.1017/S0263034613000530

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Pushkarev.

Additional information

Original Russian Text © A.I. Pushkarev, Xiao Yu, 2016, published in Pribory i Tekhnika Eksperimenta, 2016, No. 5, pp. 60–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkarev, A.I., Yu, X. Investigation of the homogeneity of a high-power ion beam formed by a diode with a closed electron drift. Instrum Exp Tech 59, 678–687 (2016). https://doi.org/10.1134/S0020441216040229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216040229

Navigation