Skip to main content
Log in

Experimental setup for studying dynamics of the calcium interaction in cells

  • Physical Instruments for Ecology, Medicine, and Biology
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A calcium cell signaling system is one of the first, which were formed in the course of evolution of systems. The understanding of calcium binding–uncaging dynamics is crucial in studies of corresponding intracellular processes. By now, a great number of calcium-dependent processes have been investigated. However, works that fully consider these processes are absent. This is specified in many respects by the instrumental abilities. In this work, requirements for the experimental setup intended for comprehensive studies of calcium interaction dynamics are briefly formulated, its block diagram is described, and the results of test experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faas, G.C., Raghavachari, S., Lisman, J.E., and Mody, I., Nat. Neurosci., 2011, vol. 14, no. 3, pp. 301–304. doi 10.1038/nn.2746

    Article  Google Scholar 

  2. Murakoshi, H. and Yasuda, R., Trends Neurosci., 2012, vol. 35, no. 2, pp. 135–143. doi 10.1016/jtins.2011. 12.002

    Article  Google Scholar 

  3. Escobar, A.L., Velez, P., Kim, A.M., Cifuentes, F., Fill, M., and Vergara, J.L., Pflügers Arch.–Eur. J. Physiol., 1997, vol. 434, no. 5, pp. 615–631. doi 10.1007 /s004240050444

    Article  Google Scholar 

  4. Bensasson, R.V., Land, E.J., and Truskot, T.G., Flash Photolysis and Pulse Radiolysis. Contribution to the Chemistry of Biology and Medicine, Pergamon, 1983.

    Google Scholar 

  5. Stutzmann, G.E., LaFerla, F.M., and Parker, I., J. Neurosci., 2003, vol. 23, no. 3, pp. 758–765.

    Google Scholar 

  6. Nägerl, U.V., Novo, D., Mody, I., and Vergara, J.L., Biophys. J., 2000, vol. 79, no. 6, pp. 3009–3018. doi 10.1016/S0006-3495(00)76537-4

    Article  Google Scholar 

  7. Blehm, B.H. and Selvin, P.R., Chem. Rev., 2014, vol. 114, no. 6, pp. 3335–3352. doi 10.1021/cr4005555

    Article  Google Scholar 

  8. Sitnikov, D.S., Ovchinnikov, A.V., Ilina, I.V., Chefonov, O.V., and Agranat, M.B., High Temp., 2014, vol. 52, no. 6, pp. 803–808. doi 10.1134/ s0018151x14060200

    Article  Google Scholar 

  9. Neuman, K.C. and Block, S.M., Rev. Sci. Instrum., 2004, vol. 75, no. 9, pp. 2787–2809. doi 10.1063/ 1.1785844

    Article  ADS  Google Scholar 

  10. Brouhard, G.J., Schek, H.T., and Hunt, A.J., IEEE Trans. Biomed. Eng., 2003, vol. 50, no. 1, pp. 121–125. doi 10.1109/tbme.2002.805463

    Article  Google Scholar 

  11. Perkins, T.T., Dalal, R.V., Mitsis, P.G., and Block, S.M., Science, 2003, vol. 301, no. 5641, pp. 1914–1918. doi 10.1126/science.1088047

    Article  ADS  Google Scholar 

  12. Koch, S.J., Shundrovsky, A., Jantzen, B.C., and Wang, M.D., Biophys. J., 2002, vol. 83, no. 2, pp. 1098–1105. doi 10.1016/s0006-3495(02)75233-8

    Article  ADS  Google Scholar 

  13. Mehta, A.D., Rief, M., Spudich, J.A., Smith, D.A., and Simmons, R.M., Science, 1999, vol. 283, no. 5408, pp. 1689–1695.

    Article  ADS  Google Scholar 

  14. Svoboda, K. and Block, S.M., Ann. Rev. Biophys. Biomol. Struct., 1994, vol. 23, no. 1, pp. 247–285. doi 10.1146/annurevbb.23.060194.001335

    Article  Google Scholar 

  15. Mehta, A.D., Finer, J.T., and Spudich, J.A., Methods Enzymol., 1998, vol. 298, pp. 436–459.

    Article  Google Scholar 

  16. Simmons, R.M., Finer, J.T., Chu, S., and Spudich, J.A., Biophys. J., 1996, vol. 70, no. 4, pp. 1813–1822. doi 10.1016/s0006-3495(96)79746-1

    Article  ADS  Google Scholar 

  17. Lukinavicius, G., Reymond, L., D’Este, E., Masharina, A., Gottfert, F., Ta, H., Guther, A., Fournier, M., Rizzo, S., Waldmann, H., Blaukopf, C., Sommer, C., Gerlich, D.W., Arndt, H.-D., Hell, S.W., et al., Nat. Meth., 2014, vol. 11, no. 7, pp. 731–733. doi 10.1038/nmeth.2972

    Article  Google Scholar 

  18. Iwaki, M., Iwane, A.H., Ikezaki, K., and Yanagida, T., Nano Lett., 2015, vol. 15, no. 4, pp. 2456–2461. doi 10.1021/nl5049059

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Loktionov.

Additional information

Original Russian Text © E.Yu. Loktionov, M.G. Mikhaylova, D.S. Sitnikov, 2016, published in Pribory i Tekhnika Eksperimenta, 2016, No. 4, pp. 124–129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loktionov, E.Y., Mikhaylova, M.G. & Sitnikov, D.S. Experimental setup for studying dynamics of the calcium interaction in cells. Instrum Exp Tech 59, 601–606 (2016). https://doi.org/10.1134/S0020441216030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216030076

Navigation