Skip to main content
Log in

A dual-wave atmosphere transparency radiometer of the millimeter wave range

  • Electronics and Radio Engineering
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The MIAP-2 radiometric complex intended for measuring the atmospheric absorption in the millimeter wavelength range (2 and 3 mm) is described. The complex is based on two solid-state modulation radiometers with wave ranges of 84–99 GHz and 132–148 GHz, which are equipped with horn-lens antennas. The device determines an optical depth in the millimeter wave range using the atmospheric-dip method and the absolute signal calibration method in the fully automated mode under the remote control via the Internet. A set of observations was performed in the stationary mode and in mountain expedition conditions. The reliability of the device was evaluated from 2-year operation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuznetsov, I.V., Fedoseev, L.I., and Chernyshev, V.I., “Application of Remote Radiophysical Methods in Natural Medium Study,” Erevan, 1990, p. 25.

    Google Scholar 

  2. Kislyakov, A.G. and Stankevich, K.S., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1967, vol. 10, nos. 9–10, p. 1213.

    Google Scholar 

  3. Fedoseev, L.I., Bozhkov, V.G., Genneberg, V.A., Petrov, I.V., and Shkaev, A.P., Radiophys. Quant. Electr., 2007, vol. 50, nos. 10–11, p. 858.

    Article  ADS  Google Scholar 

  4. Liebe, H.J., Rosenkranz, P.W., and Hufford, G.A., J. Quant. Spectrosc. Radiat. Transfer, 1992, vol. 48, nos. 5/6, p. 629. doi 10.1016/0022-4073(92)90127-P

    Article  ADS  Google Scholar 

  5. Matveev, L.T., Kurs obshchei meteorologii. Fizika atmosfery (The General Meteorology Course. Atmosphere Physics), Leningrad: Gidrometeoizdat, 1984.

    Google Scholar 

  6. Ulich, B.L., Astrophys. Lett., 1980, vol. 21, no. 1, p. 21.

    ADS  Google Scholar 

  7. Abashin, E.B., Bubnov, G.M., Vdovin, V.F., Dryagin, S.Yu., Dubrovich, V.K., Nikiforov, P.L., and Nosov, V.I., Proc. 9th All-Russ. Semin. on Radiophysics of Millimeter and Submillimeter Waves, Nizhny Novgorod, 2013, pp. 117.

    Google Scholar 

  8. Bubnov, G.M., Vdovin, V.F., Zinchenko, I.I., Nosov, V.I., Abashin, E.B., Bolshakov, O.S., Dryagin, S.Yu., and Marukhno, A.S., Proc. 25th ISSTT, Moscow, 2014, p. 76.

    Google Scholar 

  9. Abashin, E.B., Bubnov, G.M., Vdovin, V.F., Galanin, I.I., Dryagin, S.Yu., Zinchenko, I.I., and Nosov, V.I., Proc. 17th Sci. Conf. on Radiophysics, Nizhny Novgorod, 2013, p. 68.

    Google Scholar 

  10. Bubnov, G.M., Abashin, E.B., Bolshakov, O.S., Dryagin, S.Yu., Dubrovich, V.K., Maru-khno, A.S., Nosov, V.I., Vdovin, V.F., and Zinche-nko, I.I., IEEE Trans. Terahertz Sci. Technol., 2015, vol. 5, no. 1, p. 64. doi 10.1109/TTHZ.2014. 2380473

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Nikiforov.

Additional information

Original Russian Text © V.I. Nosov, O.S. Bolshakov, G.M. Bubnov, V.F. Vdovin, I.I. Zinchenko, A.S. Marukhno, P.L. Nikiforov, L.I. Fedoseev, A.A. Shvetsov, 2016, published in Pribory i Tekhnika Eksperimenta, 2016, No. 3, pp. 49–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosov, V.I., Bolshakov, O.S., Bubnov, G.M. et al. A dual-wave atmosphere transparency radiometer of the millimeter wave range. Instrum Exp Tech 59, 374–380 (2016). https://doi.org/10.1134/S0020441216020111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216020111

Navigation