Skip to main content
Log in

Heat pipe oven for optical crystals

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A heat pipe based thermal oven for crystals is presented. The crystal is placed in the adiabatic region of the heat pipe in order to have a homogenized temperature around and inside the crystal. The system ensures a steady and homogeneous temperature environment within 0.1°C precision in a wide temperature range [20°C, 100°C].This oven is used to control the temperature of the second harmonic generated from a KD*P crystal. The experimental results and modeling predictions of the temperature effect are presented and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faghri, A., Heat Pipe Science and Technology, Taylor and Francis, 1995.

    Google Scholar 

  2. Jouhara, H., WO Patent no. 2011/124,890, 2011.

  3. Jouhara, H., Int. J. Low-Carbon Technol., 2009, vol. 4, p. 52.

    Article  Google Scholar 

  4. Kerrigan, K., Jouhara, H., O’Donnell, G.E., and Robinson, A.J., Simul. Model. Pract. Theory, 2011, vol. 19, p. 1154.

    Article  Google Scholar 

  5. Pastukhov, V.G., Maidanik, Y., Vershinin, C.V., and Korukov, M.A., Appl. Therm. Eng., 2003, vol. 23, p. 1125.

    Article  Google Scholar 

  6. Jouhara, H. and Robinson, A.J., Appl. Therm. Eng., 2010, vol. 30, p. 201.

    Article  Google Scholar 

  7. Jouhara, H. and Robinson, A.J., Heat Transfer Eng., 2009, vol. 30, p. 1041.

    Article  ADS  Google Scholar 

  8. Steffes, B. and Li, X., Appl. Phys. B, 1996, vol. 62, p. 87.

    Article  ADS  Google Scholar 

  9. Boyd, R.W., Nonlinear Optics, Elsevier Sci., 2008.

    Google Scholar 

  10. Koechner, W., Solid-State Laser Engineering, Springer-Verlag, 2006.

    Google Scholar 

  11. Bloembergen, N., Nonlinear Optics, World Scientific, 1996.

    Book  MATH  Google Scholar 

  12. Sellmeier, W., Annalen der Physik und Chemie, 1871, vol. 219, p. 272.

    Article  ADS  Google Scholar 

  13. Mukhopadhyay, P.K., Alsous, M.B., Ranganathan, K., Sharma, S.K., Gupta, P.K., George, J., and Nathan, T.P.S., Appl. Phys. B, 2004, vol. 79, p. 713.

    Article  ADS  Google Scholar 

  14. EKSMA Optics, Ovens and Holders. http://www.eksmaoptics.com, 2013.

  15. Oven and Temperature Controller, Newlight Photonics. http://www.newlightphotonics.com, 2013.

  16. Shiraishi, M., Kikuchi, K., and Yamanishi, T., J. Heat Recovery Systems, 1981, vol. 1, p. 287.

    Article  Google Scholar 

  17. Jouhara, H., Ajji, Z., Koudsi, Y., Ezzuddin, H., and Mousa, N., Energy, 2013, vol. 61, p. 139.

    Article  Google Scholar 

  18. Sutherland, R.L., McLean, D.G., and Kirkpatrick, S., Handbook of Nonlinear Optics, Marcel Dekker, 2003.

    Book  Google Scholar 

  19. Nikogosyan, D., Nonlinear Optical Crystals: A Complete Survey, Springer-Verlag, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Alsous.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsous, M.B., Sabra, M.K. & Jouhara, H. Heat pipe oven for optical crystals. Instrum Exp Tech 58, 302–305 (2015). https://doi.org/10.1134/S0020441215020013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441215020013

Keywords

Navigation