Skip to main content
Log in

Ion-beam sources based on room-temperature ionic liquids for aerospace applications, nanotechnology, and microprobe analysis (review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An analytical review of the stages of development and state-of-the-art of ion-beam sources, which are based on room-temperature ionic liquids for aerospace and ion-beam technologies, is presented. The properties of ionic liquids—new ion-conducting materials (“liquid plasma or plasma in a bottle”)—are discussed. The design, operating conditions, and technology of manufacturing pointlike, capillary, matrix, and linear ion sources with ionic liquids are described in detail. The main fields of their application, including electrostatic rocket engines (microthrusters) for CubeSat-format satellites and systems with focused ion beams for technological processing of materials and structures in the nanometer region and for microprobe investigations are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welton, T., Chem. Rev., 1999, vol. 99, p. 2071, DOI: 10.102/cr980032t.

    Article  Google Scholar 

  2. Wilkes, J.S., Green Chem., 2002, vol. 4, p. 73, DOI: 10.1039/B110838G.

    Article  Google Scholar 

  3. Rogers, R.D. and Seddon, K.R., Science, 2003, vol. 302, p. 792, DOI: 10.1126/science.1090313.

    Article  Google Scholar 

  4. Zhang, S., Lu, X., Zhou, Q., Li, X., Zhang, X., and Li, S., Ionic, Liquids. Physicochemical Properties Amsterdam: Elsevier, 2009.

    Google Scholar 

  5. Walden, P., Izvestiya Imperatorskoi Akademii Nauk (IV Seriya), 1914, vol. 8, p. 405.

    Google Scholar 

  6. Kustov, L.M. and Beletskaya, I.P., Ross. Khim. Zh., 2004, vol. 48, p. 3.

    Google Scholar 

  7. Koel, M., Crit. Rev. Anal. Chem., 2005, vol. 35, p. 177.

    Article  Google Scholar 

  8. Bardi, U., Chenakin, S.P., Caporali, S., Lavacchi, A., Perissi, I., and Tolstogouzov, A., Surf. Interface Anal., 2006, vol. 38, p. 1768, DOI: 10.1002/sia.2500.

    Article  Google Scholar 

  9. Ionic Liquids in Synthesis, Wasserscheid, P. and Welton, T., Eds., Weinheim: Wiley-VCH, 2002.

    Google Scholar 

  10. Zolotov, Yu.A., Zh. Anal. Khim., 2012, vol. 67, p. 451.

    Google Scholar 

  11. Gabovich, M.D., Phys.-Usp., 1983, vol. 26, p. 447.

    ADS  Google Scholar 

  12. Forbest, R.G., Vacuum, 1997, vol. 48, p. 85, DOI: 10.1016/Soo42-207X(96)00227-8.

    Article  Google Scholar 

  13. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice, Giannuzzi, L.A. and Stevie, F.A., Eds., New York: Springer-Verlag, 2005.

    Google Scholar 

  14. Bischoff, L., Nucl. Instrum. Meth. Phys. Res., 2008, vol. 266, p. 1846, DOI: 10.1016/j.mmb.2007.12.008.

    Article  ADS  Google Scholar 

  15. Orloff, J., Utlaut, M., and Swanson, L., High Resolution Focused Ion Beams: FIB and Its Applications, New York: Kluwer Academic, 2003.

    Book  Google Scholar 

  16. Zharkov, V.V., Parshin, G.D., and Chernyak, E.Ya., Prib. Tekh. Eksp., 1989, no. 1, p. 232.

    Google Scholar 

  17. Cherepin, V.T., Ol’khovskii, V.L., Is’yanov, V.E., Zotov, I.A., and Chenakin, S.P., Prib. Tekh. Eksp., 1991, no. 4, p. 135.

    Google Scholar 

  18. Belykh, S.F., Evtukhov, R.N., Rasulev, U.Kh., and Redina, I.V., Surf. Coatings Technol., 1992, vol. 53, p. 289, DOI: 10.1016/0257-8972(92)90388-Q.

    Article  Google Scholar 

  19. Rüdenauer, F.G., Surf. Interface Anal., 2007, vol. 39, p. 116, DOI 10.1002/sia.2472.

    Article  Google Scholar 

  20. Paita, L., Ceccanti, F., Spurio, M., Cesari, U., Priami, L., Nania, F., Rossodivita, A., and Andrenucci, M., Proc. 31st Int. Electric Propulsion Conf. (IEPC-2009), Ann Arbor: Univ. Michigan, 2009, p. 186.

    Google Scholar 

  21. Grishin, S.D. and Leskov, L.V., Elektricheskie raketnye dvigateli kosmicheskikh apparatov (Electrical Rocket Engines of Space Devices), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  22. Goebel, D.M. and Katz, I., Fundamentals of Electric Propulsions: Ion and Hall Thrusters (JPL Space Science and Technology Ser.), California Inst. Technol., 2008.

    Book  Google Scholar 

  23. Cluster Secondary Ion Mass Spectrometry: Principles and Applications, Mahoney, C.M., Ed., Hoboken: Wiley, 2013.

    Google Scholar 

  24. Utke, I., Hoffmann, P., and Melngailis, J., J. Vac. Sci. Technol. B: Microelectronics and Nanometer Struct., 2008, vol. 26, p. 1197, DOI: 10.1116/1.2955728.

    Article  ADS  Google Scholar 

  25. Troyan, P.E., Aktual’nye problemy sovremennoi elektroniki i nanoelektroniki: Uchebnoe posobie (Actual Problems of Modern Electronics and Nanoelectronics: A Tutorial), Tomsk: TGU SUR, 2012.

    Google Scholar 

  26. Canongia Lopes, J.N.A. and Pádua, A.H., J. Phys. Chem. B, 2006, vol. 110, p. 3330, DOI: 10.1021/jp056006y.

    Article  Google Scholar 

  27. Yang, P., Voth, G.A., Xiao, D., Hines, Jr., L.G., Bartsch, R.A., and Quitevis, E.L., J. Chem. Phys., 2011, vol. 135, p. 034502, DOI: 10.1063/1.3601752.

    Article  ADS  Google Scholar 

  28. Armstrong, J.P., Hurst, C., Jones, R.G., Licence, P., Lovelock, K.R.J., Satterley, C.J., and Villar-Garcia, I.J., Phys. Chem. Chem. Phys., 2007, vol. 9, p. 982, DOI: 10.1039/b615137j.

    Article  Google Scholar 

  29. Neto, B.A.D., Meurer, E.C., Galaverna, R., Bythell, B.J., Dupont, J., Cooks, R.G., and Eberlin, M.N., J. Phys. Chem. Lett., 2012, vol. 3, p. 3435, DOI: 10.1021/jz301608c.

    Article  Google Scholar 

  30. Smith, E.F., Rutten, F.J.M., Villar-Garcia, I.J., Briggs, D., and Licence, P., Langmuir, 2006, vol. 22, p. 9386, DOI: 10.1021/1a061248q.

    Article  Google Scholar 

  31. Bundaleski, N., Caporali, S., Chenakin, S.P., Moutinho, A.M.C., Teodoro, O.M.N.D., and Tolstogouzov, A., Int. J. Mass Spectrom., 2013, vol. 353, p. 19, DOI: 10.1016/j.ijms.2013.05.029.

    Article  ADS  Google Scholar 

  32. Losano, P. and Martínez-Sánchez, M., J. Colloid Interface Sci., 2005, vol. 282, p. 415, DOI: 10.1016/j.ijis. 2004.08.132.

    Article  Google Scholar 

  33. Damaskin, B.B. and Petrii, O.A., Osnovy teoreticheskoi elektrokhimii (Foundations of Theoretical Electrochemistry), Moscow: Vysshaya Shkola, 1978, p. 69.

    Google Scholar 

  34. http://www.merck.ru (2014).

  35. Kustov, L.M., Khimiya Zhizn’—XXI Vek, 2007, no. 11, p. 36.

    Google Scholar 

  36. Taylor, G., Proc. Royal Soc. A: Math. Phys. Eng. Sci., 1964, vol. 280, p. 383.

    Article  ADS  MATH  Google Scholar 

  37. Müller, E.W. and Tsong, T.T., Field Ion Microscopy, Elsevier, 1970; Moscow: Metallurgizdat, 1972.

    Google Scholar 

  38. Tsong, T.T., Atom-Probe Field Ion Microscopy, Cambridge: Cambridge Univ., 1990.

    Book  Google Scholar 

  39. Schottky, W., Physikal. Zt., 1914, vol. 15, p. 872.

    Google Scholar 

  40. Grigor’ev, A.I., Tech. Phys. Lett., 2001, vol. 27, p. 155.

    Article  ADS  Google Scholar 

  41. Shiryaev, S.O., Grigor’ev, A.I., and Morozov, V.V., Tech. Phys., 2003, vol. 48, p. 822.

    Article  Google Scholar 

  42. Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., and Alice, M.B., J. Chem. Phys., 1968, vol. 49, p. 2240, DOI: 10.1063/1.1670391.

    Article  ADS  Google Scholar 

  43. Hagena, O.F. and Obert, W., J. Chem. Phys., 1972, vol. 56, p. 1793, DOI: 10.1063/1.1677455.

    Article  ADS  Google Scholar 

  44. Whitehouse, C.M., Dreyer, R.N., Yamashita, M., and Fenn, J.B., Anal. Chem., 1985, vol. 57, p. 675, DOI: 10.1021/ac0028a023.

    Article  Google Scholar 

  45. De la Mora, J.F. and Loscertales, I.G., J. Fluid Mech., 1994, vol. 260, p. 155, DOI: 10.1017/S0022112094003472.

    Article  ADS  Google Scholar 

  46. Losano, P., J. Phys. D: Appl. Phys., 2006, vol. 39, p. 126, DOI 10.1088/00223727/39/1/020.

    Article  ADS  Google Scholar 

  47. De la Mora, J.F., Ann. Rev. Fluid Dynam., 2007, vol. 39, p. 217.

    Article  ADS  Google Scholar 

  48. Romero-Sanz, I., Bocanegra, R., de la Mora, J.F., and Gamero-Castaño, M., J. Appl. Phys., 2003, vol. 94, p. 3599, DOI: 10.1063/1.1598281.

    Article  ADS  Google Scholar 

  49. Larriba, C., Castro, S., de la Mora, J.F., and Losano, P., J. Appl. Phys., 2007, vol. 101, p. 084303, DOI: 10.1063/1.2717858.

    Article  ADS  Google Scholar 

  50. Losano, P. and Martínez-Sánchez, M., J. Colloid Interface Sci., 2004, vol. 280, p. 149, DOI: 10.1016/i.jcis. 2004.07.037.

    Article  Google Scholar 

  51. Brikner, N. and Losano, P., Appl. Phys. Lett., 2012, vol. 101, p. 193504, DOI: 10.1063/1.4766293.

    Article  ADS  Google Scholar 

  52. Takeuchi, M., Hamaguchi, T., Ryuto, H., and Takaoka, G.H., Nucl. Instrum. Methods Phys. Res., 2013, vol. 315, p. 234, DOI: 10.1016/j.nimb.2013.04.074.

    Article  ADS  Google Scholar 

  53. Takeuchi, M., Hamaguchi, T., Ryuto, H., and Takaoka, G.H., Nucl. Instrum. Methods Phys. Res., 2013, vol. 315, p. 345, DOI: 10.1016/j.nimb.2013.05.065.

    Article  ADS  Google Scholar 

  54. Fujiwara, Y., Saito, N., Nonaka, H., Nakanaga, T., and Ichimura, S., Nucl. Instrum. Methods Phys. Res., 2010, vol. 268, p. 1938, DOI: 10.1016/j.nimb.2010.02.097.

    Article  ADS  Google Scholar 

  55. Fujiwara, Y., Saito, N., Nonaka, H., and Ichimura, S., Surf. Interf. Anal., 2013, vol. 45, p. 517, DOI: 10.1002/sia.5071.

    Article  Google Scholar 

  56. Waydo, S., Henry, D., and Campbell, M., IEEE Aerospace Conf. Proc., 2002, vol. 1, p. 435.

    Google Scholar 

  57. http://www.cubesat.org (2014).

  58. http://www.pocketsat.org (2014).

  59. Romero-Sanz, I., de Carcer, I.A., and de la Mora, J.F., J. Propul. Power, 2005, vol. 21, p. 239, DOI: 10.2514/1.5493.

    Article  Google Scholar 

  60. Courtney, D.G., Li, H.Q., and Losano, P., J. Phys. D: Appl. Phys., 2012, vol. 45, p. 485203, DOI: 10.1088/0022-3727/45/48/485203.

    Article  Google Scholar 

  61. Krpoun, R. and Shea, H.R., J. Appl. Phys., 2008, vol. 104, p. 064511, DOI: 10.1063/1.2981077.

    Article  ADS  Google Scholar 

  62. Krpoun, R., Smith, K.L., Stark, J.P.W., and Shea, H.R., Appl. Phys. Lett., 2009, vol. 94, p. 163502, DOI: 10.1063/1.3117191.

    Article  ADS  Google Scholar 

  63. Krpoun, R. and Shea, H.R., J. Micromech. Microeng., 2009, vol. 19, p. 045019, DOI: 10.1088/0960-1317/19/4/045019.

    Article  ADS  Google Scholar 

  64. Dandavino, S., Ataman, C., Chakraborty, S., Shea, H.R., Ryan, C., and Stark, J., Proc. 33rd Int. Electric Propulsion Conf. (IEPC-2013), Washington, DC: The George Washington University, 2013, p. 127.

    Google Scholar 

  65. http://cordis.europa.eu/projects/263035 (2014).

  66. http://www.alta-space.com/ (2014).

  67. http://sci.esa.int/lisa-pathfinder/ (2014).

  68. Marcuccio, S., Giusti, N., and Tolstoguzov, A., Proc. 31st Int. Electric Propulsion Conf. (IEPC-2009), Ann Arbor: Univ. Michigan, 2009, p. 180.

    Google Scholar 

  69. Perez-Martinez, C., Guilet, S., Gogneau, N., Jegou, P., Gierak, J., and Lozano, P., J. Vac. Sci. Technol. B, 2010, vol. 28, p. L25, DOI: 10.1116/1.3432125.

    Article  Google Scholar 

  70. Zorzos, A. and Lozano, P., J. Vac. Sci. Technol. B, 2008, vol. 26, p. 2097, DOI: 10.1116/1.2991619.

    Article  Google Scholar 

  71. Guilet, S., Perez-Martinez, C., Jegou, P., Lozano, P., and Gierak, J., Microelectron. Eng., 2011, vol. 88, p. 1968, DOI: 10.1016/j.mee.2010.12.037.

    Article  Google Scholar 

  72. http://www.lpn.cnrs.fr/fr/Commun/ (2014).

  73. Perez-Martinez, C., Guilet, S., Gierak, J., and Lozano, P., Microelectron. Eng., 2011, vol. 88, p. 2088, DOI: 101016/j.mee.2010.11.042.

    Article  Google Scholar 

  74. Takaoka, G.H., Takeuchi, M., Ryuto, H., and Ueda, R., Nucl. Instrum. Methods Phys. Res., 2013, vol. 315, p. 257, DOI: 10.1016/j.nimb.2012.11.072.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Tolstogouzov.

Additional information

Original Russian Text © A.B. Tolstogouzov, S.F. Belykh, V.S. Gurov, A.A. Lozovan, A.I. Taganov, O.M.N.D. Teodoro, A.A. Trubitsyn, S.P. Chenakin, 2015, published in Pribory i Tekhnika Eksperimenta, 2015, No. 1, pp. 5–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstogouzov, A.B., Belykh, S.F., Gurov, V.S. et al. Ion-beam sources based on room-temperature ionic liquids for aerospace applications, nanotechnology, and microprobe analysis (review). Instrum Exp Tech 58, 1–14 (2015). https://doi.org/10.1134/S002044121501011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044121501011X

Keywords

Navigation