Skip to main content
Log in

Multi-layer self-integrating Rogowski coils for high pulsed current measurement

  • Electronics and Radio Engineering
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

This paper presents design and calibration of a self-integrating Rogowski coil to measure high impulse currents. This coil is wound in single-, double-, and triple-layers by a coaxial cable without its polyvinyl chloride (PVC) jacket “sheath.” Overdamped unidirectional and oscillatory impulse currents are generated up to 7 kA and measured by different methods, namely, a commercial impulse current transformer (ICT), a commercial Rogowski coil (CRC) and the newly designed self-integrating Rogowski coil. The output voltage linearity of the designed self-integrating Rogowski coil with different layers is checked using different stages of the impulse-current generator, linear and nonlinear loads, and coil termination resistances. It is found that at a termination resistance of 1.1 Ω, satisfactory impulse current waveforms are measured by taking the commercial impulse current transformer as a reference signal. Results reveal that the magnitudes of measurement errors for the current peak, and front and tail times are <1.4%, <1.9%, and <4.5%, respectively. Overdamped impulse currents are generated by different generator capacitances, where impulse currents measured by double- and triple-layer coils have shown good agreement to those measured by the commercial devices. The trend of the results is also explained in terms of reflection, coil transit time and sensitivity bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shepard, D.E. and Yauch, D.W., An Overview of Rogowski Coil Current Sensing Technology, Ohio, USA: LEM DynAmp Inc.

  2. Some Applications of Rogowski Coils, North Yorkshire, U.K.: Rocoil Limited. http://homepage.ntlworld.com

  3. Kojovic, L.A., IEEE Trans. Comp. Appl. in Power, 2002, vol. 15, p. 50.

    Article  Google Scholar 

  4. Kojovic, L.A., IEEE PES, Power Systems Conf. Exp., 2006, p. 538.

    Google Scholar 

  5. Metwally, I.A., IEEE Trans. Instrum. Meas., 2010, vol. 59, p. 353.

    Article  Google Scholar 

  6. Metwally, I.A., IEEE Trans. Instrum. Meas., 2013, vol. 62, p. 2303.

    Article  Google Scholar 

  7. Metwally, I.A., IEEE Sensors J., 2013, vol. 13, p. 538.

    Article  Google Scholar 

  8. Metwally, I.A., IEEE Trans. Instrum. Meas., 2013, vol. 62, p. 119. DOI: 10.1109/TIM.2012.2212512.

    Article  Google Scholar 

  9. Metwally, I.A., IET, Sci., Meas. Tech., 2014, vol. 8, p. 9. DOI: 10.1049/ietsmt.2013.0045.

    Article  Google Scholar 

  10. Dubickas, V. and Edin, H., IEEE Trans. Instrum. Meas., 2007, vol. 56, p. 2284.

    Article  Google Scholar 

  11. Li, W., Mao, C., Lu, J., and Yao, Z., Int. J. Power and Energy Syst., 2005, vol. 5, p. 3342.

    Google Scholar 

  12. Qing, C., Hong-bin, L., Ming-ming, Z., and Yanbin, L., IEEE Trans. Instrum. Meas., 2006, vol. 55, p. 939.

    Article  Google Scholar 

  13. Haddad, A., German, D.M., Metwally, I.A., Naylor, P., and Waters, R.T., Proc. 28th UPEC, Staffordshire University, UK, 1993, vol. 2, p. 546.

    Google Scholar 

  14. Nassisi, V. and Luches, A., Rev. Sci. Instrum., 1979, vol. 50, p. 900.

    Article  ADS  Google Scholar 

  15. Stygar, W. and Gerdin, G., IEEE Trans. Plasma Sci., 1982, vol. 10, p. 40.

    Article  ADS  Google Scholar 

  16. Gerasimov, A., Instrum. Exper. Tech., 2002, vol. 45, p. 147.

    Article  Google Scholar 

  17. Wong, K.L., IEEE Trans. Plasma Sci., 1991, vol. 19, p. 1290.

    Article  ADS  Google Scholar 

  18. Pellinen, D.G., Di Capua, M.S., Sampayan, E., Gerbracht, H., and Wang, M., Rev. Sci. Instrum., 1980, vol. 51, p. 1535.

    Article  ADS  Google Scholar 

  19. Ferkovic, L., Ilic, D., and Malaric, R., IEEE Trans. Instrum. Meas., 2009, vol. 58, p. 122.

    Article  Google Scholar 

  20. Chiampi, M., Crotti, G., and Morando, A., IEEE Trans. Instrum. Meas., 2011, vol. 60, p. 854.

    Article  Google Scholar 

  21. Cataliotti, A., Di Cara, D., Emanuel, A.E., Nuccio, S., and Tine, G., IEEE Trans. Instrum. Meas., 2011, vol. 60, p. 1175.

    Article  Google Scholar 

  22. Ferkovic, L. and Ilic, D., Proc. 15th IMEKO TC 4 Int. Symp., 2007, p. 29.

    Google Scholar 

  23. Surge Arresters Part 4: Metal Oxide Surge Arresters with-out Gaps for AC Systems, IEC 99-4 Standard, 1991.

  24. Metwally, I.A., J. Electric Power Syst. Res., 2011, vol. 81, p. 1274.

    Article  Google Scholar 

  25. Metwally, I.A., IEEE Trans. Instrum. Meas., 2010, vol. 59, p. 2211.

    Article  Google Scholar 

  26. Abdel-Salam, M., Anis, H., Radwan, R., and El-Morshedy, A., High-Voltage Engineering: Theory and Practice, New York: Marcel Dekker, 2000, 2nd ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Metwally.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metwally, I.A. Multi-layer self-integrating Rogowski coils for high pulsed current measurement. Instrum Exp Tech 58, 49–58 (2015). https://doi.org/10.1134/S0020441215010078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441215010078

Keywords

Navigation