Skip to main content
Log in

A source of a wide-aperture gas-discharge plasma flow

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The described generator produces a wide-aperture flow of charged plasma particles (electrons, positive and negative ions) with a cross-sectional diameter of at least 120 cm, which propagates to a distance of 50 cm or more (depending on the operating mode and the geometric dimensions of the vacuum chamber). The uniform distribution of charged particles in the cross section of the plasma flow is at least 98%. The discharge current reaches 1 A or more at an accelerating voltage of 0.3–6 kV. The energy of particles in the plasma flow under such conditions was 10–6000 eV at current densities of up to 10 mA/cm2. The generator structure contains coaxially positioned meshes of the anode grid and the cathode grid. The latter closes the cavity inside the cathode volume at a depth of 3–5 mean free paths of electrons in the gas-discharge plasma flow. The cathode is manufactured so that the cavity diameter exceeds the diameter of the through cavity in the cathode insulation, the latter being determined by the size of the plasma-flow cross section. The distance between the grid anode and the cathode grid is equal to the Aston dark space of a glow discharge, thus permitting the cathode lifetime to be increased to 3 years. It is shown that the duration of the cathode continuous operation is determined by the chosen values of its cavity depth and accelerating voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanovskii, V.I. and Petrov, G.F., Ionno-plazmennaya obrabotka materialov (Ion-Plasma Treatment of Materials), Moscow: Radio i Svyaz’, 1986.

    Google Scholar 

  2. Poltavtsev, Yu.G. and Knyazev, A.S., Tekhnologiya obrabotki poverkhnostei v mikroelektronike (Surface Treatment Technology in Microelectronics), Kiev: Tekhnika, 1990.

    Google Scholar 

  3. Danilin, B.S. and Kireev, V.Yu., Primenenie nizkotemperaturnoi plazmy dlya travleniya i ochistki materialov (Use of Low-Temperature Plasma for Etching and Cleaning of Materials), Moscow: Energiya, 1987.

    Google Scholar 

  4. Soifer, V.A., Metody komp’yuternoi optiki (Methods of Computer Optics), Moscow: Fizmatlit, 2000.

    Google Scholar 

  5. Farenik, V.I., Fizich. Inzhen. Poverkhn., 2004, vol. 2, p. 117.

    Google Scholar 

  6. Averkin, S.N., Valiev, K.A., Naumov, V.A., Kalinin, A.V., Krivospitskii, A.D., Orlikovskii, A.A., and Rylov, A.A., Russ. Microelectr., 2001, vol. 30, p. 155.

    Article  Google Scholar 

  7. Berlin, E.V., Dvinin, S.A., and Seidman, L.A., Vakuumnaya tekhnologiya i oborudovanie dlya naneseniya i travleniya tonkikh plenok (Vacuum Technology and Equipment for Deposition and Etching of Thin Films), Moscow: Tekhnosfera, 2007.

    Google Scholar 

  8. Orlikovskii, A.A., Russ. Microelectron., 1999, vol. 28, p. 294.

    Google Scholar 

  9. Orlikovskii, A.A., Russ. Microelectron., 1999, vol. 28, p. 355.

    Google Scholar 

  10. Oks, E., Vizir, A.V., and Yushkov, G.Y., Rev. Sci. Instrum., 1998, vol. 69, p. 853.

    Article  ADS  Google Scholar 

  11. Burdovitsin, V.A., Fedorov, M.V., and Oks, E.M., RF Patent 2231164, Byull. Izobret., 2004, no. 23, p. 4.

    Google Scholar 

  12. Soifer, V.A., Kazanskii, N.L., Kolpakov, V.A., and Kolpakov, A.I., RF Patent 2333619, Byull. Izobret. Polez. Model., 2008, no. 25, p. 5.

    Google Scholar 

  13. Vagner, I.V., Bolgov, E.I., Grakun, V.F., Gokhveld, V.L., and Kudlai, V.A., Avtomat. Svarka, 1972, no. 12, p. 27.

    Google Scholar 

  14. Vagner, I.V., Bolgov, E.I., Grakun, V.F., Gokhveld, V.L., and Kudlai, V.A., Zh. Tekh. Fiz., 1974, vol. 44, p. 1669.

    Google Scholar 

  15. Komov, A.N., Kolpakov, A.I., Bondareva, N.I., and Zakharenko, V.V., Prib. Tekh. Eksp., 1984, no. 5, p. 218.

    Google Scholar 

  16. Kazanskii, N.L. and Kolpakov, V.A., Komp. Optika, 2003, no. 25, p. 112.

    Google Scholar 

  17. Kolpakov, V.A., Kolpakov, A.I., and Krichevskii, S.V., Proc. All-Russ. Sci.-Tech. Conf. “Actual Problems of Radioelectronics and Telecommunication,” Samara, 2012, Piganov, M.N., Ed., Samara: Izd. SGAU, 2012, pp. 303–306.

  18. Tkachev, A.N. and Yakovlenko, S.I., Tr. Inst. Obshch. Fiz., Ross. Akad. Nauk, 2007, vol. 63, p. 64.

    Google Scholar 

  19. Kazanskii, N.L. and Kolpakov, V.A., Formirovanie opticheskogo mikrorel’efa vo vneelektrodnoi plazme vysokovol’tnogo gazovogo razryada (Formation of Optical Microrelief in Off-Electrode Plasma of High-Voltage Gas Discharge), Moscow: Radio i Svyaz’, 2009.

    Google Scholar 

  20. Kolpakov, V.A., Russ. Microelectron., 2002, vol. 31, p. 366.

    Article  Google Scholar 

  21. Kudryavtsev, A.A., Smirnov, A.S., and Tsendin, L.D., Fizika tleyushchego razryada: Uchebnoe posobie (Glow-Discharge Physics: A Tutorial), St. Petersburg: Lan’, 2010.

    Google Scholar 

  22. Gavrilov, N.V. and Men’shikov, A.I., Tech. Phys., 2012, vol. 57, p. 399.

    Article  Google Scholar 

  23. Nikonenko, V.A., Matematicheskoe modelirovanie tekhnologicheskikh protsessov: modelirovanie v srede Math-CAD (Mathematical Modeling of Technological Processes: Modeling in the MathCAD Environment), Moscow: MISiS, 2001.

    Google Scholar 

  24. Kazanskii, N.L., Kolpakov, V.A., Kolpakov, A.I., Krichevskii, S.V., and Ivliev, N.A., Komp. Optika, 2007, vol. 31, p. 42.

    Google Scholar 

  25. Khebda, M., Spravochnik po tribotekhnike (A Handbook on Triboengineering), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  26. Buckley, D.H., Surface Phenomena in Adhesion, Friction, Wear, and Lubrication, Amsterdam: Elsevier, 1981; Moscow: Mashinostroenie, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Kolpakov, A.I. Kolpakov, S.V. Krichevskii, 2014, published in Pribory i Tekhnika Eksperimenta, 2014, No. 2, pp. 60–67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolpakov, V.A., Kolpakov, A.I. & Krichevskii, S.V. A source of a wide-aperture gas-discharge plasma flow. Instrum Exp Tech 57, 147–154 (2014). https://doi.org/10.1134/S0020441214020183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441214020183

Keywords

Navigation