Skip to main content
Log in

Evaluating image reconstruction methods in improving effective parameters on image quality in IRI-microPET

  • Physical Instruments for Ecology, Medicine, and Biology
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

We intend to improve the image reconstruction for RMS contrast, spatial resolution and signal-to-noise (SNR) parameters for the animal positron emission tomograph IRI—microPET (IRI-Islamic Republic of Iran), designed and built at the Gamma scan laboratory of nuclear science and technology research institute. Acquired images quality from this system depends on different algorithms for image reconstruction in addition to its design and construction. In this paper, system features and tomography method are considered, firstly. Then, image reconstruction algorithms (MLEM, SART, and FBP) were performed on sinogarm. Acquired images quality from these reconstructed algorithms was compared with RMS contrast, spatial resolution and SNR characteristics. Also, reconstructed time and speed of process for three algorithms was considered. According to results, obtained RMS contrast, spatial resolution and signal to noise ratio (SNR) from reconstructed images with MLEM algorithm shows superiority of MLEM algorithm against the SART and FBP algorithms but its computation time is high. Thus, SART algorithm can be suitable replacement for MLEM algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nichol, C. and Kim, E.E., J. Nucl. Med., 2001, vol. 42, p. 1368.

    Google Scholar 

  2. Thanos, P.K., Taintor, N.B., Alexoff, D., et al., J. Nucl. Med., 2002, vol. 43, p. 1570.

    Google Scholar 

  3. Britz-Cunningham, S.H. and Adelstein, S.J., J. Nucl. Med., 2003, vol. 44, p. 1945.

    Google Scholar 

  4. Cherry, S.R., Shao, Y., Silverman, R.W., Siegel, S., Meadors, K., Young, J., Jones, W.F., Newport, D., Moyers, C., Mumcuoglu, E.U., Chatziioannou, A., Farquhar, T., Andreaco, M., Paulus, M., Binkley, D., and Nutt, R., IEEE Trans. Nucl. Sci., 1997, vol. 44, p. 1161.

    Article  ADS  Google Scholar 

  5. Myers, R., Nucl. Med. Biol., 2001, vol. 28, p. 585.

    Article  Google Scholar 

  6. Chatziioannou, A.F., Eur. J. Nucl. Med., 2002, vol. 29, p. 98.

    Article  Google Scholar 

  7. Park, S.J., Rogers, W.L., and Clinthorne, N.H., Phys. Med. Biol., 2007, vol. 52, p. 2807.

    Article  Google Scholar 

  8. Cheng, J., Shoghi, K., and Laforest, R., Med. Phys., 2012, vol. 39, p. 1029.

    Article  Google Scholar 

  9. Lartizien, C., Kinahan, P.E., Swensson, R., et al., J. Nucl. Med., 2003, vol. 44, p. 276.

    Google Scholar 

  10. Zhu, H., Shu, H., Zhou, J., Toumoulin, C., and Luo, L., Med. Biol. Eng. Comput., 2006, vol. 44, p. 983.

    Article  Google Scholar 

  11. Boellaard, R., Lingen, A., and Lammertsma, A.A., J. Nucl. Med., 2001, vol. 42, p. 808.

    Google Scholar 

  12. Motta, A., Damiani, C., Del Guerra, A., et al., Comput. Med. Imaging. Graph., 2002, vol. 26, p. 293.

    Article  Google Scholar 

  13. Ming, J. and Wang, G., IEEE Trans. Imag. Process., 2003, vol. 12, p. 957.

    Article  MATH  ADS  Google Scholar 

  14. Andersen, A. and Kak, A., Ultrasonic Imag., 1984, vol. 6, p. 81.

    Article  Google Scholar 

  15. Fahey, F.H., J. Nucl. Med. Technol., 2002, vol. 30, p. 39.

    Google Scholar 

  16. Hebert, T., Leahy, R., and Singh, M., IEEE Trans. Nucl. Sci., 1988, vol. 35, p. 615.

    Article  ADS  Google Scholar 

  17. Vandenberghea, S., D’Asseler, Y., de Wallea, R.V., et al., Comput. Med. Imaging. Graph., 2001, vol. 25, p. 105.

    Article  Google Scholar 

  18. Peli, E., J. Opt. Soc. Am., 1990, vol. 7, p. 2032.

    Article  ADS  Google Scholar 

  19. Herman, G.T., Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed., Springer-Verlag, 2009.

    Book  Google Scholar 

  20. Lage, E., Vaquero, J.J., Sisniega, A., et al., Phys. Med. Biol., 2009, vol. 54, p. 5427.

    Article  Google Scholar 

  21. Tai, Y.C., Chatziioannou, A.F., Yang, Y., Silverman, R.W., Meadors, K., Siegel, S., Newport, D.F., Stickel, J.R., and Cherry, S.R., Phys. Med. Biol., 2003, vol. 48, p. 1519.

    Article  Google Scholar 

  22. Tong, S., Alessio, A.M., and Kinahan, P.E., Proc. IEEE Nucl. Sci. Symp. Conf., 2009, p. 3042.

    Google Scholar 

  23. Riddell, C., Carson, R.E., Carrasquillo, J.A., et al., J. Nucl. Med., 2001, vol. 42, p. 1316.

    Google Scholar 

  24. Lodge, M.A., Rahmim, A., and Wahl, R.L., Phys. Med. Biol., 2010, vol. 55, p. 1069.

    Article  Google Scholar 

  25. Kisung, L., Kinahan, P.E., Miyaoka, R.S., et al., IEEE Trans. Nucl. Sci., 2004, vol. 51, p. 27.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Islami rad.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islami rad, S.Z., Shamsaei Zafarghandi, M., Gholipour Peyvandi, R. et al. Evaluating image reconstruction methods in improving effective parameters on image quality in IRI-microPET. Instrum Exp Tech 57, 218–221 (2014). https://doi.org/10.1134/S0020441214020171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441214020171

Keywords

Navigation