Skip to main content
Log in

Calibration of the LHCb electromagnetic calorimeter using the technique of neutral pion invariant mass reconstruction

  • Nuclear Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Calibration of the electromagnetic calorimeter for the LHCb experiment is aimed at measuring the electron and photon energies with an accuracy of 2% or better. A number of calibration techniques are sequentially used for this purpose. One of these techniques is based on reconstruction of the π0 meson invariant mass in a two-photon decay. Using this procedure, it is possible to calibrate the electromagnetic calorimeter in the transverse energy range of 300–1500 MeV. An important advantage of this technique is its independence of the states of the other LHCb spectrometer systems. Statistics sufficient for attaining the declared purpose can be rapidly acquired owing to the large cross section of neutral pion production in deep inelastic events. The algorithm has been implemented as a part of the LHCb software. The calibration procedure using neutral pions takes no more than 2 weeks and helps achieve the required accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adeva, B., Adinolfi, M., Ajaltouni, Z.J., et al., Report CERN-LHCC-2003-030, Geneva, 2003.

    Google Scholar 

  2. Adeva, B., Adinolfi, M., Ajaltouni, Z.J., et al., Report CERN-LHCC-2000-0036, Geneva, 2000.

    Google Scholar 

  3. Aref’ev, A.V., Belyaev, I.M., Bobchenko, B.M., Voronchev, K.I., Golutvin, A.I., Gushchin, O.B., Egorychev, V.Yu., Korol’ko, I.E., Kvaratskheliya, T.G., Machikhil’yan, I.V., Prukudin, M.S., Rusinov, V.Yu., Rusinov, D.V., Tarkovskii, E.I., Gilitskii, Yu.V., Barsuk, S.Ya., and Shuvalov, S.V., Instrum. Exp. Tech., 2008, vol. 51, no. 4, p. 511.

    Article  Google Scholar 

  4. Machikhilyan, I., J. Phys.: Conf. Ser., 2009, vol. 160, p. 012047.

    ADS  Google Scholar 

  5. Arefev, A., Barsuk, S., Belyaev, I., et al., Report CERN-LHCb-2007-149, Geneva, 2007.

    Google Scholar 

  6. Korolko, I., Obraztsov, V.F., Popescu, S., and Yushchenko, O.P., Report LHCb-2000-051, Geneva, 2000.

    Google Scholar 

  7. Voronchev, K. and Belyaev, I., Report CERN-LHCb-2006-051, Geneva, 2006.

    Google Scholar 

  8. Zoccoli, A., Nucl. Instrum. Methods Phys. Res., A, 2000, vol. 446, p. 246.

    Article  ADS  Google Scholar 

  9. Deschamps, O., Machefert, F., Schune, M.-H., Pakhlova, G., and Belyaev, I., Report LHCb-2003-091, Geneva, 2003.

    Google Scholar 

  10. Beringer, J., Arguin, J.-F., Barnett, R.M., et al., Phys. Rev., D, 2012, vol. 86, p. 010001.

    Article  ADS  Google Scholar 

  11. Adeva, B., Adinolfi, M., Ajaltouni, Z.J., et al., Report CERN-LHCc-2005-019, Geneva, 2005; Barrand, G., Belyaev, I., Binko, P., Cattaneo, M., Chytracek, R., Corti, G., Frank, M., Gracia, G., Harvey, J., Herwijnen, E.V., Maley, P., Mato, P., Probst, S., and Ranjard, F., Comp. Phys. Commun., 2001, vol. 140, p. 45.

    Google Scholar 

  12. Melchert, O., arXiv:1207.6002 [physics.data-an].

  13. Lavrijsen, W., Generowicz, J., Marino, M., and Mato, P., Report CERN-2005-002, Geneva, 2005.

    Google Scholar 

  14. Antcheva, I., Ballintijn, M., Bellenot, B., Biskup, M., Brun, R., Buncic, N., Couet, O., Franco, L., Ganis, G., Gheata, A., Maline, D.G., Iwaszkiewicz, J., Kreshuk, A., Segura, D.M., Maunder, R., Moneta, L., Naumann, A., Offermann, E., Onuchin, V., Rademakers, F., Tadel, M., Canal, P., Panacek, S., Russo, P., Casadei, D., Fine, V., and Goto, M., Comp. Phys. Commun., 2009, vol. 180, p. 2499.

    Article  ADS  Google Scholar 

  15. Baud, J.P., Charpentier, P., Ciba, K., et al., J. Phys.: Conf. Ser, 2012, vol. 396, p. 032023.

    ADS  Google Scholar 

  16. Mato, P. and Smith, E., J. Phys.: Conf. Ser., 2010, vol. 219, p. 042015.

    ADS  Google Scholar 

  17. Sjöstrand, T., Mrenna, S., and Skands, P., Report JHEP, 2006, vol. 05, p. 026, arXiv:hep-ph/0603175.

    Article  Google Scholar 

  18. Belyaev, I., Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, 2010, p. 1155.

    Google Scholar 

  19. Lange, D.J., Nucl. Instrum. Methods Phys. Res., A, 2001, vol. 462, p. 152.

    Article  ADS  Google Scholar 

  20. Golonka, P. and Was, Z., Eur. Phys. J., C, 2006, vol. 45, p. 97; arXiv:hep-ph/0506026.

    Article  ADS  Google Scholar 

  21. Allison, J., Amako, K., Apostolakis, J., et al., IEEE Trans. Nucl. Sci., 2006, vol. 53, p. 270; Agostinelli, S., Allison, J., Amako, K., et al., Nucl. Instrum. Methods Phys. Res., A, 2003, vol. 506, p. 250.

    Article  ADS  Google Scholar 

  22. Santacesaris, R. and Satta, A., Report CERN-LHCB-2004-048, Geneva, 2004.

    Google Scholar 

  23. Clemencic, M., Corti, G., Easo, S., et al., J. Phys.: Conf. Ser., 2011, vol. 331, p. 032023.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Savrina.

Additional information

Original Russian Text © I.M. Belyaev, D.Yu. Golubkov, V.Yu. Egorychev, D.V. Savrina, 2014, published in Pribory i Tekhnika Eksperimenta, 2014, No. 1, pp. 46–52.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaev, I.M., Golubkov, D.Y., Egorychev, V.Y. et al. Calibration of the LHCb electromagnetic calorimeter using the technique of neutral pion invariant mass reconstruction. Instrum Exp Tech 57, 33–39 (2014). https://doi.org/10.1134/S0020441213060171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441213060171

Keywords

Navigation