Skip to main content
Log in

Methods for detecting events in double-phase argon chambers

  • Nuclear Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Multichannel wire gas electron multipliers in combination with pin anodes are proposed for detection of events in the gas phase of a double-phase argon chamber. Hydrogen with a concentration of 10 vol % is added to argon to eliminate feedbacks by photons emitted by excited argon molecules in avalanche development processes while detecting events in the argon gas. A maximum electron multiplication coefficient of ∼300 has been obtained for the multichannel wire gas electron multipliers with a 1-mm gap used to detect α particles in the Ar + 10% H2 mixture at a pressure of 1 atm (abs.). When a pin anode is used, the maximum electron multiplication factor is ∼2.5 × 105 for α particles and 3 × 106 for β particles (63Ni). It has been experimentally shown that adding H2 with a concentration of 100 ppm to liquid argon has no effect on the singlet component of the scintillation signal in the liquid argon and reduces the emission efficiency relative to the pure argon gas phase only slightly (by 20%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ovchinnikov, B.M., Ovchinnikov, Yu.B., and Parusov, V.V., arXiv: 1102.3558 [physics.ins-det] 2011.

  2. Ovchinnikov, B.M., Parusov, V.V., and Ovchinnikov, Yu.B., Instrum. Exper. Techn., 2011, vol. 54, no. 1, p. 43.

    Article  Google Scholar 

  3. Oka, T., Kogota, M., Imamura, M., et al., J. Chem. Phys., 1979, vol. 70, p. 3384.

    Article  ADS  Google Scholar 

  4. Kubota, S., Hishida, M., Suzuki, M., and Ruan, J., Nucl. Instrum. Methods Phys. Res., A, 1982, vol. 196, p. 101.

    Article  Google Scholar 

  5. Dolgoshein, B.A., Kruglov, A.A., Lebedenko, V.N., et al., Fiz. Elem. Chast. At. Yadra, 1973, vol. 4, no. 1, p. 167.

    Google Scholar 

  6. Ovchinnikov, B.M. and Parusov, V.V., Instrum. Exper. Techn., 2010, vol. 53, no. 6, p. 836.

    Article  Google Scholar 

  7. Ovchinnikov, B.M., Ovchinnikov, Yu.B., and Parusov, V.V., arXiv: 1012. 4716 [physics.ins-det] 2010.

  8. Bateman, J.E., Nucl. Instrum. Methods Phys. Res., A, 1985, vol. 238, p. 524.

    Article  ADS  Google Scholar 

  9. Peskov V., Fonte P., Danielsson M., et al., Preprint LIP/01-05, Coimbra, Portugal, 2001.

    Google Scholar 

  10. Fonte, P., Peskov, V., and Ramsey, B.D., Nucl. Instrum. Methods Phys. Res., A, 1998, vol. 416, p. 23.

    Article  ADS  Google Scholar 

  11. Peskov, V., Ramsey, B.D., and Fonte, P., Nucl. Instrum. Methods Phys. Res., A, 1997, vol. 392, p. 89.

    Article  ADS  Google Scholar 

  12. Bondar, A., Buzulutskov, A., Dolgov, A., et al., arXiv:1210/0649 [physics.ins-det] 2012.

  13. Bondar, A., Buzulutskov, A., Grebennik, A., et al., Nucl. Instrum. Methods Phys. Res., A, 2006, vol. 556, p. 273.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Ovchinnikov.

Additional information

Original Russian Text © B.M. Ovchinnikov, V.V. Parusov, 2013, published in Pribory i Tekhnika Eksperimenta, 2013, No. 4, pp. 24–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikov, B.M., Parusov, V.V. Methods for detecting events in double-phase argon chambers. Instrum Exp Tech 56, 516–520 (2013). https://doi.org/10.1134/S0020441213050072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441213050072

Keywords

Navigation