Skip to main content
Log in

A high-current plasma emitter of electrons based on a glow discharge with a multirod electrostatic trap

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Pulsed electron guns that produce 170-mm-diameter beams with currents of up to 700 A, electron energies of 300 keV, and a pulse width of ∼200 μs at a gas pressure of ∼0.01 Pa are experimentally studied. Glow-discharge plasma with electron confinement in an electrostatic trap is used as the electron emitter. The trap is formed by a hexagonal prism that consists of 204 cathode rods, which are 5 mm in diameter, 200 mm in length and are spaced by 1.5 mm, as well as 780 cathode rods, which are 5 mm in diameter and 98 mm in length, the spacing between their axes amounting to 15 mm. The latter rods are inside the former system of rods. The plasma emitter fills the hexagonal prism, which is free of rods, at the trap center with a distance of 280 mm between opposite sides and a height of ∼200 mm between the emissive grid connected to the anode and the trap bottom covered with 23-mm-diameter cathode disks. All the cathode rods and disks are insulated from one another and connected to the discharge power supply through TVO-2 430-Ω resistors. The current limitation in the circuit of each cathode element by a value of ∼2 A at a pulse width of ∼5 ms of the glow-discharge current of up to 1 kA fully excludes its glow-to-arc transitions and allows production of continuous pulsed electron beams with an energy capacity of up to 40 kJ and a uniform distribution of the current density over its cross-sectional area of ∼0.025 m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metel, A.S., Surf. Coat. Technol., 2002, vol. 156, nos. 1/3, p. 38.

    Article  Google Scholar 

  2. Sil’notochnye impul’snye elektronnye puchki v tekhnologii (High-Current Pulse Electron Beams in Technology), Mesyats, G.A., Ed., Novosibirsk: Nauka, 1983.

    Google Scholar 

  3. Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., et al., Jpn. J. Appl. Phys., 2011, vol. 50, no. 8, p. JG04–1.

    Article  Google Scholar 

  4. Metel, A.S., Melnik, Yu.A., and Panin, V.V., Fiz. Plazmy, 2011, vol. 37, no. 4, p. 387.

    Google Scholar 

  5. Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Prudnikov, V.V., Fiz. Plazmy, 2011, vol. 37, no. 7, p. 674.

    Google Scholar 

  6. Gavrilov, N.V., Mesyats, G.A., Radkovskii, G.V., and Bersenev, V.V., Surf. Coat. Technol., 1997, vol. 96, no. 1, p. 81.

    Article  Google Scholar 

  7. Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Bolbukov, V.P., Instrum. Exper. Tech., 2012, vol. 55, p. 122.

    Article  Google Scholar 

  8. Metel, A.S., Plasma Phys. Rep., 2012, vol. 38, p. 254.

    Article  ADS  Google Scholar 

  9. Koval, N.N., Kreindel, Yu.E., and Shchanin, P.M., Zh. Tekh. Fiz., 1983, vol. 53, no. 9, p. 1846.

    Google Scholar 

  10. Schonland, B.F.J., Proc. R. Soc. London, Ser. A, 1923, vol. 104, no. 725, p. 235.

    Article  ADS  Google Scholar 

  11. Schonland, B.F.J., Proc. R. Soc. London, Ser. A, 1925, vol. 108, no. 745, p. 187.

    Article  ADS  Google Scholar 

  12. Goebel, D.M. and Watkings, R.M., Rev. Sci. Instrum., 2000, vol. 71, p. 388.

    Article  ADS  Google Scholar 

  13. Metel, A.S., Instrum. Exper. Tech., 1987, vol. 30, p. 178.

    Google Scholar 

  14. Melnik, Yu.A., Metel, A.S., and Ushakov, G.D., VII Vsesoyuznyi simpozium po sil’notochnoi elektronike: Tezisy dokladov (Proc. 7th All-Union Symp. on High-Current Electronics), Tomsk: ISE SO AN SSSR, 1988, part 1, p. 113.

    Google Scholar 

  15. Filippov, V.G., Instrum. Exper. Tech., 1981, vol. 24, p. 125.

    Google Scholar 

  16. Metel, A.S., Grigorev, S.N., Melnik, Yu.A., and Panin, V.V., Plasma Phys. Rep., 2009, vol. 35, p. 1058.

    Article  ADS  Google Scholar 

  17. Metel, A.S. and Grigoriev, S.N., Tleyushchii razryad s elektrostaticheskim uderzhaniem elektronov: fizika, tekhnika, primeneniya (Glow-Discharge with Electrostatic Confinement of Electrons: Physics, Technology, Applications), Moscow: Yanus-K, 2005.

    Google Scholar 

  18. Metel, A.S., Sov. Phys. Tech. Phys., 1985, vol. 30, p. 1133.

    ADS  Google Scholar 

  19. Metel, A.S., Sov. Phys. Tech. Phys., 1986, vol. 31, p. 1395..

    Google Scholar 

  20. Bulychev, S.V., Vyalykh, D.V., Dubinov, A.E., et al., Plasma Phys. Rep., 2009, vol. 35, p. 941.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Metel.

Additional information

Original Russian Text © A.S. Metel, Yu.A. Melnik, 2013, published in Pribory i Tekhnika Eksperimenta, 2013, No. 3, pp. 76–84.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metel, A.S., Melnik, Y.A. A high-current plasma emitter of electrons based on a glow discharge with a multirod electrostatic trap. Instrum Exp Tech 56, 317–324 (2013). https://doi.org/10.1134/S0020441213020164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441213020164

Keywords

Navigation