Skip to main content
Log in

Plasma sources of ions of solids

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Three variants of the design of ion sources are described: (1) with a hollow cathode and an anode-evaporator system in the rear part of the source, (2) with a cylindrical anode, and (3) with a hollow cathode and an anode in the front part. It is shown that these sources are most suitable for obtaining ion beams of solid-state elements and provide ion currents of ∼70–100 μA (for Al, Bi, As, Sb), 25 μA (Eu), and 15–30 μA (Fe, V, Cr, and doubly charged and molecular ions). Such sources are characterized by a relatively long operation time (tens of hours) and a low energy consumption level (300–400 W). The operational principle of ion sources is described with consideration for the differences in their designs. The experimental results are presented: the dependences of the ion currents on the discharge current, cathode current, and induction of the magnetic field of the source’s electromagnet, as well as the results of the computer simulations that are based on a numerical model of the ionization of atoms in the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Wei-qing, Qi, Le-jun, Lu, Ming, et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, p. 155329.

    Article  ADS  Google Scholar 

  2. Facsko, S., Dekorsy, T., Koerdt, C., et al., Science, 1999, vol. 285, p. 1551.

    Article  Google Scholar 

  3. Meldrum, A., Boatner, L.A., and White, C.W., Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Inter. Mater. Atoms, 2001, vol. 178, p. 7.

    Article  ADS  Google Scholar 

  4. Meldrum, A., Buchanan, K.S., Hryciw, A., and White, W., Adv. Mat., 2004, vol. 16, p. 31.

    Article  Google Scholar 

  5. Komarov, F., Vlasukova, L., Wesch, W., et al., Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Inter. Mater. Atoms, 2008, vol. 266, p. 3557.

    Article  ADS  Google Scholar 

  6. Komarov, F.F., Mil’chanin, O.V., Vlasukova, L.A., et al., Izv. Ross. Akad. Nauk., Ser. Fiz., 2010, vol. 74, p. 273.

    Google Scholar 

  7. Prucnal, S., Turek, M., Drozdziel, A., et al., Appl. Phys., B, 2010, vol. 101, p. 315.

    Article  ADS  Google Scholar 

  8. Prucnal, S., Turek, M., Drozdziel, A., et al., Centr. Europ. J. Phys., 2011, vol. 9, p. 338.

    Article  ADS  Google Scholar 

  9. Vijendran, S., Lin, S.D., and Jones, G.A.C., Microelectron. Eng., 2004, vol. 73–74, p. 111.

    Article  Google Scholar 

  10. Overberg, M.E., Gila, B.P., Thaler, G.T., et al., J. Vac. Sci. Technol., B, 2002, vol. 20, p. 969.

    Article  Google Scholar 

  11. Ping, C., Jian, M., Lirong, R., and Lin, G., J. Rare Earth, 2006, vol. 24, p. 298.

    Article  Google Scholar 

  12. Kanjilal, A., Rebohle, L., Prucnal, S., et al., Phys. Rev., B: Condens. Matter Mater. Phys., 2009, vol. 80, p. 241313.

    Article  ADS  Google Scholar 

  13. Prucnal, S., Rebohle, L., and Skorupa, W., Appl. Phys., B, 2009, vol. 94, p. 289.

    Article  ADS  Google Scholar 

  14. Castagna, M.E., Coffa, S., Monaco, M., et al., Mater. Sci. Eng., B, 2003, vol. 105, p. 83.

  15. Handbook of Ion Sources, Wolf, B., CRC Press, 1995.

  16. Brown, I.G., The Physics and Technology of Ion Sources, Weinheim: Wiley-VCH, 2004.

    Book  Google Scholar 

  17. Waldmann, H. and Martin, B., Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Inter. Mater. Atoms, 1995, vol. 98, p. 532.

    Article  ADS  Google Scholar 

  18. Southon, J.R. and Roberts, M.L., Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Inter. Mater. Atoms, 2000, vol. 172, p. 257.

    Article  ADS  Google Scholar 

  19. Belykh, S.F., Palitsin, V.V., Veryovkin, I.V., et al., Appl. Surf. Sci., 2006, vol. 252, p. 7321.

    Article  ADS  Google Scholar 

  20. Feng, Y.C. and Wong, S.P., Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Inter. Mater. Atoms, 1999, vol. 149, p. 195.

    Article  ADS  Google Scholar 

  21. Meldizon, J., Vacuum, 1996, vol. 47, p. 209.

    Article  Google Scholar 

  22. Meldizon, J., Drozdziel, A., Latuszynski, A., et al., Vacuum, 2003, vol. 70, p. 447.

    Article  Google Scholar 

  23. Rosiński, M., Badziak, J., Boody, F.P., et al., Vacuum, 2005, vol. 78, p. 435.

    Article  Google Scholar 

  24. Khalil, A.A.I. and Gondal, M.A., Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Inter. Mater. Atoms, 2009, vol. 267, p. 3356.

    Article  ADS  Google Scholar 

  25. Ganetsos, Th.R., Mair, G.L., Aidinis, C.J., and Bischoff, L., Physica B, 2003, vols. 340–342, p. 1166.

    Article  Google Scholar 

  26. Mazarov, P., Wieck, A.D., Bischoff, L., and Pilz, W., J. Vac. Sci. Technol., B, 2009, vol. 27, p. L47.

    Article  Google Scholar 

  27. Yamada, H. and Torii, Y., Rev. Sci. Instrum., 1986, vol. 57, p. 1282.

    Article  ADS  Google Scholar 

  28. Sidenius, G., Nucl. Instrum. Meth., 1965, vol. 38, p. 26.

    Article  ADS  Google Scholar 

  29. Wísniewski, R., Czachor, A., Wilczynska, T., and Semina, V.K., High Press. Res.: An Int. J., 2007, vol. 27, p. 193.

    Article  ADS  Google Scholar 

  30. Wilczynska, T., Wiśniewski, R., Czachor, A., and Semina, V.K., Przegl. Elektrotechn., 2008, vol. 84, p. 186.

    Google Scholar 

  31. Nielsen, K.O., Nucl. Instrum. Meth., 1957, vol. 1, p. 289.

    Article  Google Scholar 

  32. Turek, M., Prucnal, S., Drozdziel, A., and Pyszniak, K., Rev. Sci. Instrum., 2009, vol. 80, p. 043304.

    Article  ADS  Google Scholar 

  33. Turek, M., Droździel, A., Pyszniak, K., et al., Przegl. Elektrotechn., 2010, vol. 86, p. 193.

    Google Scholar 

  34. Turek, M., Prucnal, S., Drozdziel, A., and Pyszniak, K., Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Inter. Mater. Atoms, 2011, vol. 269, p. 700.

    Article  ADS  Google Scholar 

  35. Hockney, R. and Eastwood, J., Computer Simulation Using Particles, Philadelphia: Adam Hilger, 1988.

    Book  MATH  Google Scholar 

  36. Bartlett, P.L. and Stelbovics, A.T., Phys. Rev., A, 2002, vol. 66, p. 012707.

    Article  ADS  Google Scholar 

  37. Lotz, W., Z. Phys., 1969, vol. 220, p. 466.

    Article  ADS  Google Scholar 

  38. Freund, R.S., Wetzel, R.C., Shul, R.J., and Hayes, T.R., Phys. Rev., A, 1990, vol. 41, p. 3575.

    Article  ADS  Google Scholar 

  39. Oks, E.M. and Yushkov, G.Yu., Russ. Phys. J., 1994, vol. 37, p. 222.

    Article  Google Scholar 

  40. http://www.highvolteng.com/media/Leaflets/Model-SO-55-Ion-Source.pdf

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M. Turek, A. Drozdziel, K. Pyszniak, S. Prucnal, D. Maczka, Yu.V. Yushkevich, Yu.A. Vaganov, 2012, published in Pribory i Tekhnika Eksperimenta, 2012, No. 4, pp. 57–69.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turek, M., Drozdziel, A., Pyszniak, K. et al. Plasma sources of ions of solids. Instrum Exp Tech 55, 469–481 (2012). https://doi.org/10.1134/S0020441212030062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441212030062

Keywords

Navigation