Skip to main content
Log in

Discrimination of particles by the scintillation pulse shape (in the electron energy range of 0.5–4.0 MeV) using the zero-crossing method

  • Nuclear Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The ratios of the fast to slow components of scintillation pulses produced by neutrons and γ rays have been calculated on the basis of experimental data for several energies in the range of 0.5-4.0 MeV of the electron equivalent. The procedure for discriminating between neutrons and γ rays by measuring the zero-crossing time of a bipolar pulse formed by RC circuits has been simulated for organic scintillators using the Monte Carlo method in the range of 0.012-4.000 MeV of the electron equivalent. It is shown that pulse shape discrimination of particles based on the zero-crossing technique allows rejection of γ-ray background down to a level of 10-4 at particle energies of >100 keV of the electron equivalent (for energies of <50 keV, the γ-ray background is suppressed to a level of 10-1- 10-2 and this technique becomes ineffective in principle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herzo, D., Koga, R., Millard, W.A., et al., Nucl. Instrum. Methods Phys. Res., 1974, vol. 123, p. 583.

    Google Scholar 

  2. Verbitsky, S.S., Emokhonov, V.N., Lapic, A.M., et al., Izv. Akad. Nauk, Ser. Energetika, 2007, no. 6, p. 140.

    Google Scholar 

  3. Bollinger, L.M. and Thomas, G.E., Rev. Sci. Instrum., 1961, vol. 32, no. 9, p. 1044.

    Article  ADS  Google Scholar 

  4. Baker, J.H., Galunov, N.Z., Kostin, V.G., et al., Problems of Atomic Science and Technology, Ser. Nuclear Physics Investigations, 2007, no. 5, p. 126.

    Google Scholar 

  5. Brooks, F.D., Nucl. Instrum. Methods Phys. Res., 1979, vol. 162, p. 477.

    Article  ADS  Google Scholar 

  6. Gatti, E. and De Martini, F., Nucl. Electronics. IAEA Wilen, 1962, vol. 2, p. 265.

    Google Scholar 

  7. Roush, M.L., Wilson, V.F., and Hornyak, W.F., Nucl. Instrum. Methods Phys. Res., 1964, vol. 31, p. 112.

    Article  ADS  Google Scholar 

  8. Sabbah, B. and Suhami, A., Nucl. Instrum. Methods Phys. Res., 1969, vol. 58, p. 102.

    ADS  Google Scholar 

  9. Ranucci, G., Goretti, A., and Lombardi, P., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 412, p. 374.

    Article  Google Scholar 

  10. Wolski, D., Moszynski, V., Ludzievski, T., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 360, p. 594.

    Article  ADS  Google Scholar 

  11. Klein, G., Mol. Cryst. Liq. Cryst., 1978, vol. 47, p. 39.

    Article  Google Scholar 

  12. Verbitsky, S.S., Nucl. Instrum. Methods Phys. Res., 1978, vol. 151, p. 117.

    Article  ADS  Google Scholar 

  13. Verbitsky, S.S., Lapic, A.M., Minaev, A.I., et al., Prib. Tekh. Eksp., 1992, no. 2, p. 135.

    Google Scholar 

  14. Kuchnir, F.T. and Lynch, F.J., IEEE Trans. Nucl. Sci., 1968, no. 15(9), p. 107.

    Article  ADS  Google Scholar 

  15. Verbitsky, S.S., Lapic, A.M., Ratner, B.S., et al., Yad. Fiz., 2009, vol. 72, no. 3, p. 420 [Phys. At. Nucl. (Engl. Transl.), vol. 72, no. 3, p. 387].

    Google Scholar 

  16. Prokuronov, M.V., Golubev, A.A., Demidov, V.S., et al., Prib. Tekh. Eksp., 2006,no. 2, p. 67 [Instrum. Exp. Tech. (Engl. Transl.), no. 2, p. 207].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Verbitsky.

Additional information

Original Russian Text © S.S. Verbitsky, V.N. Emokhonov, A.M. Lapic, D.Yu. Maksimov, A.V. Rusakov, G.V. Solodukhov, M.A. Tikanov, A. N. Tselebrovsky, A.A. Shilyaev, 2010, published in Pribory i Tekhnika Eksperimenta, 2010, No. 3, pp. 55–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbitsky, S.S., Emokhonov, V.N., Lapic, A.M. et al. Discrimination of particles by the scintillation pulse shape (in the electron energy range of 0.5–4.0 MeV) using the zero-crossing method. Instrum Exp Tech 53, 368–373 (2010). https://doi.org/10.1134/S0020441210030073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441210030073

Keywords

Navigation