Skip to main content
Log in

A detector for imaging of explosions on a synchrotron radiation beam

  • Nuclear Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Synchrotron radiation (SR) offers a unique chance to study the structure of a substance in fast processes. Since SR is emitted by electron bunches in a storage ring, the SR burst corresponding to a single bunch may be very short. Should a detector capable of detecting SR from a single bunch without mixing signals from different bunches be available, it is possible to obtain information on changes in the state of the material in a sample under investigation with a very high time resolution. A detector for imaging of explosions on an SR beam—DIMEX—has been developed by the Budker Institute of Nuclear Physics (Siberian Division of the Russian Academy of Sciences, Novosibirsk). This detector is a high-pressure ion-ization chamber with a strip readout at a pitch of 0.1 mm. The electron component of primary ionization is collected within 50 ns, which is substantially shorter than the orbital period of a bunch in the VEPP-3 storage ring (250 ns). The DIMEX is filled with a Xe—CO2 mixture (3: 1) at an absolute pressure of 7 atm. The spatial resolution of the detector is ∼210 µm, and its efficiency for radiation with an energy of 20 keV is ≥50%. The dynamic range of the detector is ∼100, which allows one to measure the signal with an accuracy of ∼1%. In this case, the maximum flux of X-ray photons, at which the DIMEX operates in a linear region, is ∼1010 photons/(channel s). Today, the detector has been used in experiments aimed at studying evolution of the density in detonation waves and processes of nanoparticle production at the VEPP-3 storage ring by employing the small-angle X-ray scattering technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aulchenko, V., Papushev, P., Ponomarev, S., et al., J. Synchrotron Rad., 2003, vol. 10, p. 361.

    Article  Google Scholar 

  2. Aulchenko, V., Ponomarev, S., Shekhtman, L., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 513, p. 388.

    Article  ADS  Google Scholar 

  3. Aulchenko, V.M., Evdokov, O.V., Shekhtman, L.I., et al., J. Instr., 2008, vol. 3, p. 05005.

    Article  ADS  Google Scholar 

  4. Sauli, F., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 386, p. 531.

    Article  ADS  Google Scholar 

  5. Buzulutskov, A.F., Prib. Tekh. Eksp., 2007, no. 3, p. 5 [Instrum. Exp. Tech. (Engl. Transl.), no. 3, p. 287].

    Google Scholar 

  6. Horisberger, R. and Pitzl, D., Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 326, p. 92.

    Article  ADS  Google Scholar 

  7. Fassó, A., Ferrari, A., Ranft, J., and Sala P.R., CERN-2005-10, INFN/TC-05/11, SLAC-R-773.

  8. Fassó, A., Ferrari, A., Roesler, S., et al. Computing in High Energy and Nucl. Phys. 2003 Conf. (CHEP2003), La Jolla, CA, USA, 2003; http://nicadd.niu.edu/tjeremy/lcd/doc/chep/03/SimAndModeling/MOMT005. PDF, eConf C0303241 (2003) MOMT005 [hep-h/0306267].

  9. Sharma, A. and Veenhof, R., http://consult.cern.ch/ writeup/garfield/examples/gas/trans2000.html.

  10. Bachmann, S., Bressan, A., Ropelewski, L., et al., Nucl. Instrum. Methods Phys. Res., A 1999, vol. 438, p. 376.

    Article  ADS  Google Scholar 

  11. Pikalov, V.V. and Preobrazhenskii, N.G., Rekonstruk-tivnaya tomografiya v gazodinamike i fizike plazmy (Reconstruction Tomography in Gas Dynamics and Plasma Physics), Novosibirsk: Nauka SO, 1987.

    Google Scholar 

  12. Kozlovskii, V.N., Informatsiya v impul’snoi rentgen-ografii (Information in Pulsed X-ray Radiography), Snezhinsk, Russia: RFYaTs-VNIITF, 2006.

    Google Scholar 

  13. Pruuel, E.R., Merzhievskii, L.A., Ten, K.A., et al., Fiz. Goreniya Vzryva, 2007, vol. 43, no. 3, p. 121 [Combustion, Explosion, and Shock Waves (Engl. Transl.), no. 3, p. 355].

    Google Scholar 

  14. Evdokov, O.V., Kozyrev, A.N., Litvinenko, V.V., et al., Nucl. Instrum. Methods. Phys. Res. A, 2007, vol. 575, p. 116.

    Article  ADS  Google Scholar 

  15. Ten, K.A., Pruuel, E.R., Merzhievsky, L.A., et al., Nucl. Instrum. Methods Phys. Res. A, 2009, vol. 603, p. 160.

    Article  ADS  Google Scholar 

  16. Titov, V.M., Tolochko, B.P., Ten, K.A., et al., Diam. Relat. Mater, 2007, vol. 16, p. 2009.

    Article  Google Scholar 

  17. Dainty, J.C. and Shaw, R., Image Science: Principles, Analysis, and Evaluation of Photographic-Type Imaging Processes, NJ.: Academic, 1974.

    Google Scholar 

  18. Beutel, J., Kundel, H.L., and Van Metter, R.L., Handbook of Medical Imaging, vol. 1: Physics and Psycho-physics, SPIE Press, 2000.

  19. Porosev, V.V., Shekhtman, L.I., Zelikman, M.I., and Blinov, N.N., Jr., Meditsinskaya Tekhnika, 2004, no. 5, p. 16.

    Google Scholar 

  20. Tabata, T., Ito, R., Okabe, S., et al., Nucl. Instrum. Methods Phys. Res., 1972, vol. 103, p. 85.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Shekhtman.

Additional information

Original Russian Text © V.M. Aulchenko, O. V. Evdokov, I.L. Zhogin, V V. Zhulanov, E.R. Pruuel, B.P. Tolochko, K.A. Ten, L.I. Shekhtman, 2010, published in Pribory i Tekhnika Eksperimenta, 2010, No. 3, pp. 20–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulchenko, V.M., Evdokov, O.V., Zhogin, I.L. et al. A detector for imaging of explosions on a synchrotron radiation beam. Instrum Exp Tech 53, 334–349 (2010). https://doi.org/10.1134/S0020441210030036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441210030036

Keywords

Navigation