Skip to main content
Log in

Spectral pyrometry (Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

In the emission spectra of many objects, there are regions where the intensity distribution is similar to the blackbody spectrum. This allows one to determine the temperature by recording the emission spectrum and comparing it to a Planck spectrum. Experimental or calculated data on the emissivity of such objects are not necessary because the temperature is determined as a parameter of the distribution observed. This property characterizes the emission spectra of gaseous and solid-phase flames, erosion plasmas of surface discharges, metals, semiconductors, dielectrics, micro- and nanoparticles, and heterogeneous media (powder mixtures and ceramics) at temperatures both lower and higher than the melting temperature. Spectrometers with photodetector arrays sensitive in the wavelength range of 200–1100 nm are used to record spectra. Such spectrometers allow spectrum recording and determination of the radiator temperature in the temperature range of 800 K–140 kK within a time of ∼1 ms. The specific features of the method, examples of its application, measurement characteristics, unsolved problems, and prospects are discussed in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ribo, G., Opticheskaya pirometriya (Optical Pyrometry), Moscow: GTTI, 1934.

    Google Scholar 

  2. Temperaturnye izmereniya. Spravochnik (Temperature Measurements: Handbook), Gerashchenko, O.A, Ed., Kiev: Naukova Dumka, 1989, p. 447.

    Google Scholar 

  3. Izluchatel’nye svoistva tverdykh materialov (Emission Poperties of Solid Materials), Sheindlin, A.E., Ed., Moscow: Energiya, 1974.

    Google Scholar 

  4. Fizicheskie velichiny. Spravochnik (Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991, p. 766.

    Google Scholar 

  5. Ravindra, N.M., Sopori, B., Gokce, O.H., et al., Int. J. Thermophys., 2001, vol. 22, no. 5, p. 1593.

    Article  Google Scholar 

  6. Rozenbaum, O., De Sousa, M.D., Auger, Y., et al., Rev. Sci. Instrum., 1999, vol. 70, no. 10, p. 4020.

    Article  ADS  Google Scholar 

  7. Tanaka, H., Sawai, S., Morimoto, K., and Hisano, K., Int. J. Thermophys., 2000, vol. 21, no. 4, p. 927.

    Article  Google Scholar 

  8. Xi, F., Xiaogang, S., and Righini, F., Int. J. Thermophys., 2003, vol. 24, no. 3, p. 849.

    Article  Google Scholar 

  9. Gardner, J.L., Jones, T.P., and Davies, M.R., High Temperatures-High Pressures, 1981, vol. 13, p. 459.

    Google Scholar 

  10. Svet, D.Ya., Opticheskie metody izmereniya istinnykh temperatur (Optical Methods for Measuring True Temperatures), Moscow: Nauka, 1982.

    Google Scholar 

  11. Hunter, G.B., Allemand, C.D., and Eagar, T.W., Opt. Eng., 1985, vol. 24, no. 6, p. 1081.

    ADS  Google Scholar 

  12. Duvaut, Th., Infrared Phys. Technol., 2008, vol. 51, p. 292.

    Article  ADS  Google Scholar 

  13. Gertsberg, G., Spektry i stroenie dvukhatomnykh molekul (Spectra and Structures of Diatomic Molecules), Moscow: IIL, 1949.

    Google Scholar 

  14. Khokhlov, M.Z., Opt. Spektrosk., 1958, vol. 4, no. 4, p. 438.

    MathSciNet  Google Scholar 

  15. Touzeau, M., Vialle, M., Zellagui, A., et al., J. Phys. D: Appl. Phys., 1991, vol. 24, no. 1, p. 41.

    Article  ADS  Google Scholar 

  16. Metody issledovaniya plazmy (Methods for Plasma Investigation), Lohte-Holtgreven, V., Ed., Moscow: Mir, 1971, p. 335.

    Google Scholar 

  17. Muraoka, K. and Maeda, M., Laser-Aided Diagnostics of Plasmas and Gases, Bristol: IOP Publ., 2001.

    Book  Google Scholar 

  18. Heinz, D.L. and Jeanloz, R., in High Pressure Research in Mineral Physics, Manghani, M.H. and Syono, Y., Eds., Tokyo: Terra Sci. Publ.; Washington: Amer. Geophys. Union, 1987, p. 113.

    Google Scholar 

  19. Kop’ev, V.A., Kossyi, I.A., Magunov, A.N., and Tarasova, N.M., Prib. Tekh. Eksp., 2006, no. 4, p. 131.

  20. Gupta, S.C., Love, S.G., and Ahrens, T.J., Earth Planet. Sci. Lett., 2002, vol. 201, p. 1.

    Article  ADS  Google Scholar 

  21. Boness, D.A. and Brown, J.M., Phys. Rev. Lett., 1993, vol. 71, no. 18, p. 2931.

    Article  ADS  Google Scholar 

  22. Morachevskii, N.V., Trudy FIAN, 1978, vol. 103, p. 118.

    Google Scholar 

  23. Subramanian, N., Chandra Shekar N.V., Sanjay Kumar, N.R., and Sahu, P.Ch., Curr. Sci., 2006, vol. 91, no. 2, p. 175.

    Google Scholar 

  24. Chandra, Shekar N.V., Sahu, P.Ch., and Govindra, R.K., J. Mater. Sci. Technol., 2003, vol. 19, no. 6, p. 518.

    Google Scholar 

  25. Yoo, C.S., Holmes, N.C., Ross, M., et al., Phys. Rev. Lett., 1993, vol. 70, no. 25, p. 3931.

    Article  ADS  Google Scholar 

  26. Deemyad, S., Sterer, E., Barthel, C., and Rekhi, S., Rev. Sci. Instrum., 2005, vol. 76, p. 125104.

    Article  ADS  Google Scholar 

  27. Lin, J.-F., Sturhahn, W., Zhao, J., et al., Geophys. Res. Lett., 2004, vol. 31, p. L 14611.

    ADS  Google Scholar 

  28. Shen, G., Rivers, M.L., Wang, Y., and Sutton, S.R., Rev. Sci. Instrum., 2001, vol. 72, no. 2, p. 1273.

    Article  ADS  Google Scholar 

  29. Boehler, R., Hyperfine Interact., 2000, vol. 128, p. 307.

    Article  ADS  Google Scholar 

  30. Zhao, J., Sturhahn, W., Lin, J.-F., Shen, G., et al., High Pressure Research, vol. 24, no. 4, p. 447.

  31. Kunz, M., Caldwell, W.A., Miyagi, L., and Wenk, H.-R., Rev. Sci. Instrum., 2007, vol. 78, p. 063907.

    Article  ADS  Google Scholar 

  32. Zaitsev, A., Optical Properties of Diamond: A Data Handbook, Berlin: Springer, 2001.

    Google Scholar 

  33. Herchen, H. and Cappelli, M.A., Proc. SPIE-Int. Soc. Opt. Eng., 1991, vol. 1534, p. 158.

    ADS  Google Scholar 

  34. Heidinger, R., Dammertz, G., Steinbock, L., and Thumm, M., Proc. XII Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (ECE 2002), Aix-en-Provence, 2002, p. 499.

  35. Sweeney, J.S. and Heinz, D.L., Pure Appl. Geophys., 1993, vol. 141, nos. 2–4, p. 497.

    Article  ADS  Google Scholar 

  36. McCauley, T.S., Israel, A., and Vohra, Y.K., Rev. Sci. Instrum., 1997, vol. 68, no. 4, p. 1860.

    Article  ADS  Google Scholar 

  37. Baller, T.S., Kools, J.C.S., and Dieleman, J., Appl. Surf. Sci., 1990, vol. 46, p. 292.

    Article  ADS  Google Scholar 

  38. Timans, P.J., J. Appl. Phys., 1992, vol. 72, no. 2, p. 660.

    Article  ADS  Google Scholar 

  39. Rekhi, S., Tempere, J., and Silvera, I.F., Rev. Sci. Instrum., 2003, vol. 74, no. 8, p. 3820.

    Article  ADS  Google Scholar 

  40. Curry, A.C., Shih, A.J., Kong, J., et al., J. Am. Ceram. Soc., 2003, vol. 86, no. 2, p. 333.

    Article  Google Scholar 

  41. Barkhudarov, E.M., Gritsinin, S.I., Dreiden, G.V., et al., Fiz. Plazmy, 2004, vol. 30, no. 6, p. 575.

    Google Scholar 

  42. Gritsinin, S.I., Kossyi, I.A., and Magunov, A.N., Tez. XII Ros. konf. po teplofizich. svoistvam veshchestv (RKTS-XII) (Proc. of XII Russian Conf. On Thermal Properties of Substances (RCTP-XII)), Moscow: Interkontakt, 2008, p. 103.

    Google Scholar 

  43. Ng, D. and Fralick, G., Rev. Sci. Instrum., 2001, vol. 72, no. 2, p. 1522.

    Article  ADS  Google Scholar 

  44. Bufetov, I.A. and Dianov, E.M., Usp. Fiz. Nauk, 2005, vol. 175, no. 1, p. 100. [Phys.-Usp. (Engl. Transl.), vol. 175, no. 1].

    Google Scholar 

  45. Hand, D.P. and Russell, P.St.J., Opt. Lett., 1988, vol. 13, no. 9, p. 767.

    Article  ADS  Google Scholar 

  46. Stellaratory (Stellarators), Kovrizhnyi, L.M., Ed., Moscow: Nauka, 1991, vol. 31.

    Google Scholar 

  47. Ulrickson, M., J. Vac. Sci. Technol., A, 1986, vol. 4, no. 3, p. 1805.

    Article  ADS  Google Scholar 

  48. Araki, M. and Kobayashi, M., Rev. Sci. Instrum., 1996, vol. 67, no. 1, p. 178.

    Article  ADS  Google Scholar 

  49. Margulis, M.A., Usp. Fiz. Nauk, 2000, vol. 170, no. 3, p. 263.

    Article  MathSciNet  Google Scholar 

  50. Brenner, M.P., Hilgenfeldt, S., and Lohse, D., Rev. Mod. Phys., 2002, vol. 74, p. 425.

    Article  ADS  Google Scholar 

  51. Gaitan, D.F., Crum, L.A., Church, C.C., and Roy, R.A., J. Acoust. Soc. Am., 1992, vol. 91, p. 3166.

    Article  ADS  Google Scholar 

  52. Hiller, R., Putterman, S.J., and Barber, B.P., Phys. Rev. Lett., 1992, vol. 69, p. 1182.

    Article  ADS  Google Scholar 

  53. Vazquez, G., Camara, C., Putterman, S.J., and Weninger, K., Phys. Rev. Lett., 1974, vol. 88, p. 197402.

    Article  ADS  Google Scholar 

  54. Flannigan, D.J. and Suslick, K.S., Nature, 2005, vol. 434, p. 52.

    Article  ADS  Google Scholar 

  55. Vazquez, G., Camara, C., Putterman, S., and Weninger, K., Opt. Lett., 2001, vol. 26, p. 575.

    Article  ADS  Google Scholar 

  56. Brujan, E.A., Hecht, D.S., Lee, F., and Williams, G.A., Phys. Rev. E, 2005, vol. 72, p. 066310.

  57. Batanov, G.M., Berezhetskaya, N.K., Kop’ev, V.A., et al., Teplofiz. Vys. Temp., 2008, vol. 46, no. 1, p. 135 [High Temp. (Engl. Transl.), vol. 46, no. 1, p. 124–130].

    Google Scholar 

  58. Batanov, G.M., Berezhetskaya, N.K., Kop’ev, V.A., et al., Fiz. Plazmy, 2008, vol. 34, no. 4, p. 361.

    Google Scholar 

  59. Obertacke, R., Wintrich, H., Wintrich, F., and Leipertz, A., Comb. Sci. Technol., 1996, vol. 121, nos. 1–6, p. 133.

    Article  Google Scholar 

  60. Gorokhov, E.V., Magunov, A.N., Feshchenko, V.S., and Altukhov, A.A., Prib. Tekh. Eksp., 2008, no. 2, p. 131.

  61. Batanov, G.M., Berezhetskaya, N.K., Kop’ev, V.A., et al., Dokl. Akad. Nauk, 2006, vol. 407, no. 6, p. 752.

    Google Scholar 

  62. Levashov, E.A., Rogachev, A.S., Yukhvid, V.I., and Borovinskaya, I.P., Fiziko-khimicheskie i tekhnologicheskie osnovy samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Physicochemical and Technological Fundamentals of Self-Propagating High-Temperature Synthesis), Moscow: Binom, 1999.

    Google Scholar 

  63. Docquier, N. and Candel, S., Progr. Energy Combustion Sci., 2002, vol. 28, p. 107.

    Article  Google Scholar 

  64. Goroshin, S., Frost, D.L., Levine, J., et al., Propellants, Explosives, Pyrotechnics, 2006, vol. 31, no. 3, p. 169.

    Article  Google Scholar 

  65. Belokurov, G.M., Tupitsyn, E.V., Aluker, D.E., et al., Pis’ma Zh. Tekh. Fiz., 2006, vol. 32, no. 1, p. 45 [Tech. Phys. Lett. (Engl. Transl.), vol. 32, no. 1, p. 23–24].

    Google Scholar 

  66. Magunov, A.N., Lazernaya termometriya tverdykh tel (Laser Thermometry of Solids), Moscow: Fizmatlit, 2001.

    Google Scholar 

  67. Robinson, R.D., Spanier, J.E., Zhang, F., et al., J. Appl. Phys., 2002, vol. 92, no. 4, p. 1936.

    Article  ADS  Google Scholar 

  68. Stoffels, E., Stoffels, W.W., Vender, D., et al., IEEE Trans. Plasma. Sci., 1994, vol. 22, no. 2, p. 116.

    Article  ADS  Google Scholar 

  69. Frenzel, U., Roggenkamp, A., and Kreisle, D., Chem. Phys. Lett., 1995, vol. 240, nos. 1–3, p. 109.

    Article  ADS  Google Scholar 

  70. Schou, J, Amoruso, S, and Lunney, J.G, in Laser Ablation and its Applications (Springer Series in Optical Sciences), Phipps, C.R., Ed., Berlin: Springer, 2006, p. 89.

    Google Scholar 

  71. Osswald, S., Behler, K., and Gogotsi, Y., J. Appl. Phys., 2008, vol. 104, p. 074308.

    Article  ADS  Google Scholar 

  72. Costa, J., Roura, P., Morate, J.R., and Bertran, E., J. Appl. Phys., 1998, vol. 83, no. 12, p. 7879.

    Article  ADS  Google Scholar 

  73. Cramer, L.P., Schubert, B.E., Petite, P.S., et al., J. Appl. Phys., 2005, vol. 97, p. 074307.

  74. Landström, L., Elihn, K., Boman, M., et al., Appl. Phys. A, 2005, vol. 81, no. 4, p. 827.

    Article  ADS  Google Scholar 

  75. Makarov, G.N., Usp. Fiz. Nauk, 2008, vol. 178, no. 4, p. 337 [Phys.-Usp. (Engl. Transl.), vol. 178, no. 4].

    Article  Google Scholar 

  76. Hansen, K. and Campbell, E.E.B., J. Chem. Phys., 1996, vol. 104, no. 13, p. 5012.

    Article  ADS  Google Scholar 

  77. Vostrikov, A.A., Agarkov, A.A., and Dubov, D.Yu., Zh. Tekh. Fiz., 2000, vol. 70, no. 7, p. 102 [Tech. Phys. (Engl. Transl.), vol. 70, no. 7, p. 915–921].

    Google Scholar 

  78. Campbell, A.J., Rev. Sci. Instrum., 2008, vol. 79, p. 015108.

    Article  ADS  Google Scholar 

  79. Boiko, V.A., Krokhin, O.N., and Sklizkov, G.V., in Tr. FIAN (Proc. of Lebedev Physics Institute), Moscow: Nauka, 1974, vol. 76, p. 186.

    Google Scholar 

  80. Jeon, J.-S., Yang, I.-J., Na, J.-H., and Kwak, H.-Y., J. Phys. Soc. Jpn., 2000, vol. 69, no. 1, p. 112.

    Article  ADS  Google Scholar 

  81. Oganov, A.R. and Ono, S., Proc. Nat. Acad. Sci. USA, 2005, vol. 102, no. 31, p. 10828.

    Article  ADS  Google Scholar 

  82. Kormer, S.B., Usp. Fiz. Nauk, 1968, vol. 94, no. 4, p. 641.

    Google Scholar 

  83. Lingart, Yu.K., Petrov, V.A., and Tikhonova, N.A., Teplofiz. Vys. Temp., 1982, vol. 20, no. 5, p. 872.

    Google Scholar 

  84. Bityukov, V.K. and Petrov, V.A., Mikroelektronika, 2004, vol. 33, no. 6, p. 403.

    Google Scholar 

  85. Yakovlenko, S.I., Kvantovaya Electron., 2004, vol. 34, no. 9, p. 787.

    Article  Google Scholar 

  86. Prirodnye almazy Rossii (Natural Diamonds of Russia) Kvaskov, V.B., Ed., Moscow: Polyaron, 1997, p. 33.

    Google Scholar 

  87. Manenkov, A.A., in Tr. FIAN (Proc. of Lebedev Physics Institute), Moscow: Nauka, 1978, vol. 101, p. 3.

    Google Scholar 

  88. Danileiko, Yu.K., Manenkov, A.A., and Nechitailo, V.S., in Tr. FIAN (Proc. of Lebedev Physics Institute), Moscow: Nauka, 1978, vol. 101, p. 29.

    Google Scholar 

  89. Gorshkov, B.G., in Tr. FIAN (Proc. of Lebedev Physics Institute), Moscow: Nauka, 1982, vol. 137, p. 79.

    Google Scholar 

  90. Manenkov, A.A., Kvantovaya Electron., 2003, vol. 33, no. 7, p. 639.

    Article  Google Scholar 

  91. Rokhlin, G.N., Razryadnye istochniki sveta (Discharge Light Sources), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  92. Derevshchikov, V.A. and Deryabina, M.A., Teplofiz. Vys. Temp., 1966, vol. 4, no. 1, p. 20.

    Google Scholar 

  93. Derevshchikov, V.A., Zh. Tekh. Fiz., 1970, vol. 40, no. 7, p. 1546.

    Google Scholar 

  94. Golovin, A.F., Kvantovaya Electron., 1994, vol. 21, no. 2, p. 175.

    Google Scholar 

  95. Ovechkin, G.V., Usp. Fiz. Nauk, 1992, vol. 162, no. 6, p. 161.

    Google Scholar 

  96. Stoffels, W.W., Stoffels, E., Kroesen, G.M., and de Hoog, F.J., J. Vac. Sci. Technol., A, 1996, vol. 14, no. 2, p. 588.

    Article  ADS  Google Scholar 

  97. Kavner, A. and Panero, W.R., Phys. Earth&Planet. Inter, 2004, vols. 143–144, p. 527.

    Article  Google Scholar 

  98. Svet, D.Ya., Ob“ektivnye metody vysokotemperaturnoi tpirometrii pri nepreryvnom spektre izlucheniya (Objective Methods of High-Temperature Pyrometry for Continuous Radiation Spectra), Moscow: Nauka, 1968.

    Google Scholar 

  99. Mikhlyaev, S.V., Mukhin, Yu.D., and Nezhevenko, E.S., Avtometriya, 1998, no. 1, p. 39.

  100. Leonov, A.S. and Rusin, S.P., Teplofiz. Aeromekh., 2001, no. 3, p. 475.

  101. Kirenkov, I.I., Metrologicheskie osnovy opticheskoi pirometrii (Metrological Fundamentals of Optical Pyrometry), Moscow: Izd. Standartov, 1976.

    Google Scholar 

  102. Bodrov, V.N. and Mukhina, V.I., Vestnik MEI, 2000, no. 2, p. 87.

  103. Dai, J., Wang, X., and Liu, X., Int. J. Thermophys., 2008, vol. 29, no. 3, p. 1116.

    Article  MathSciNet  Google Scholar 

  104. Felice, R.A., Proc. SPIE-Int. Soc. Opt. Eng., 2004, vol. 5405, p. 36.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Magunov, 2009, published in Pribory i Tekhnika Eksperimenta, 2009, No. 4, pp. 5–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magunov, A.N. Spectral pyrometry (Review). Instrum Exp Tech 52, 451–472 (2009). https://doi.org/10.1134/S0020441209040010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441209040010

PACS numbers

Navigation