Skip to main content
Log in

A thin-film resistive sensor for measuring atomic hydrogen flux density

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An eight-channel thin-film resistive atomic hydrogen (AH) sensor is described. It is intended to measure the AH flux density in an atomic-molecular mixture at a reduced gas pressure (10−2–10−4 Pa), particularly under the action of infrared and visible radiation noise, in a computer-aided mode. The sensor can be used for measuring a distribution of the AH flux density of the large cross-section beam. The range of AH flux density measurements is 5 × 1013 − 1016 atoms/(cm2 s), the measurement time is 1–10 min, and the measurement error is 10%. The sensitive element of the sensor is made using planar technology, which offers a chance to attain a high resolution in spatial distribution mesurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trofimov, V.A., Vasil’ev, A.A., and Kovalev, A.I., Prib. Tekh. Eksp., 2005, no. 1, p. 141 [Instrum. Exp. Tech. (Engl. Transl.), no. 1, p. 122].

  2. Sugaya, T. and Kawabe, M., Jpn. J. Appl. Phys. A, 1991, vol. 30, no. 3, p. L402.

    Article  ADS  Google Scholar 

  3. Hosoda, N., Kyogoku, Y., and Suga, T., J. Mater. Sci., 1998, no. 33, p. 253.

  4. Kagadei, V.A. and Proskurovsky, D.I., J. Vac. Sci. Technol. A, 1999, vol. 17, no. 4, p. 1488.

    Article  ADS  Google Scholar 

  5. Khatiri, A., Rapalda, J.M., and Krzyzewsky, T.J., Surf. Sci., 2004, no. 548, p. L1.

  6. Raizer, Yu.P., Fizika gazovogo razryada, Moscow: Nauka, 1987. Translated under the title The Physics of Gas Discharge, Berlin: Springer, 1991.

    Google Scholar 

  7. Gordiets, B.F., Pinheiro, M.J., Tatarova, E., and Ferreira, C.M., Abstracts of Papers, Proc. of XXIV Int. Conf. on Phenomena in Ionized Gases, Warsaw, Poland, 1999, no. 2, p. 133.

    Google Scholar 

  8. Bruneteau, A.M., Hollos, G., Bacal, M., and Bretagne, J., J. Appl. Phys., 1990, vol. 67, no. 12, p. 7254.

    Article  ADS  Google Scholar 

  9. Foner, S., Usp. Fiz. Nauk, 1966, vol. 89, no. 3, p. 467.

    Google Scholar 

  10. Akulov, Yu.A., Mamyrin, B.A., and Shikhaliev, P.M., Zh. Tekh. Fiz., 1997, vol. 67, no. 5, p. 140 [Tech. Phys. (Engl. Transl.), vol. 42, no. 5, p. 584].

    Google Scholar 

  11. Mikirtych’yants, M.S., Vasil’ev, A.A., and Kovalev, A.I., Preprint of St. Petersburg Nuclear Physics Institute, St. Petersburg, 2002, no. 2486, p. 27.

  12. Samano, E.C., Carr, W.E., Seidl, M., and Lee, B.S., Rev. Sci. Instrum., 1993, vol. 64, no. 10, p. 2746.

    Article  ADS  Google Scholar 

  13. Serikov, L.V., Shiyan, L.N., Gorbachev, A.F., and Tyurin, Yu.I., USSR Inventor’s Certificate no. 4755621, Byull. Izobret., 1991, no. 44, p. 38.

  14. Bruno, G., Losurdo, M., and Capezzuto, P., Appl. Phys. Lett., 1995, vol. 66, no. 26, p. 3573.

    Article  ADS  Google Scholar 

  15. Schwarz-Selinger, T., von Keudell, A., and Jacob, W., J. Vac. Sci. Technol. A, 2000, vol. 18, no. 3, p. 995.

    Article  ADS  Google Scholar 

  16. Nienhaus, H., Bergh, H.S., and Gergen, B., Appl. Phys. Lett., 1999, vol. 74, no. 26, pp. 4046–4048.

    Article  ADS  Google Scholar 

  17. Lavrenko, V.A., Rekombinatsiya atomov vodoroda na poverkhnosti tverdykh tel (The Recombination of Hydrogen Atoms at the Surface of Solids), Kiev: Naukova Dumka, 1973.

    Google Scholar 

  18. Sutoh, A., Okada, Y., Ohta, S., and Kawabe, M., Jpn. J. Appl. Phys., 1995, no. 34, p. L1379.

  19. Kagadei, V.A., Nefedtsev, E.V., and Proskurovskii, D.I., Izv. Vyssh. Uchebn. Zaved., Fiz., 2003, no. 11, p. 67.

  20. Kagadei, V.A., Nefedtsev, E.V., Proskurovskii, D.I., and Romanenko, S.V., Pis’ma Zh. Tekh. Fiz., 2003, vol. 29, no. 21, p. 40 [Tech. Phys. Lett. (Engl. Transl.), vol. 29, no. 11, p. 897].

    Google Scholar 

  21. Kagadei, V.A., Nefyodtsev, E.V., Proskurovsky, D.I., and Romanenko, S.V., PCT International Publication Number: WO03/048753 A2, June 12, 2003.

  22. Vzaimodeistvie vodoroda s metallami (Interaction of Hydrogen with Metals), Zakharov, A.P., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  23. Hydrogen in Metals 2, Alefeld, G. and Völkl, J., Eds., Berlin: Springer, 1978.

    Google Scholar 

  24. Fromm, E. and Gebhardt, E., Gases and Carbon in Metals, Berlin-Heidelberg-New York: Springer, 1976.

    Google Scholar 

  25. Kagadei, V., Nefyodtsev, E., Proskurovsky, D., and Romanenko, S.V., Sensors and Actuators A, 2004, vol. 113, no. 3, p. 293.

    Article  Google Scholar 

  26. Cheng, Y.-T., Hills, R., Li, Y., et al., US Patent no. 6670115, Sep. 23, 1997; http://www.freepatentsonline.com/5670115.html.

  27. Dwivedi, D., Dwivedi, R., and Srivastava, S.K., Sens. Actuators B, 2000, no. 71, p. 161.

  28. Kun-Wei Lin, Huey-Ing Chen, and Chun-Tsen Lu, Semicond. Sci. Technol., 2003, no. 18, p. 615.

  29. Sutoh, A., Okada, Y., Ohta, S., and Kawabe, M., Jpn. J. Appl. Phys., 1995, no. 34, p. L1379.

  30. Kagadei, V.A. and Proskurovski, D.I., J. Vac. Sci. Technol. A, 1998, vol. 16, no. 4, p. 2556.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Kagadei, E.V. Nefedtsev, D.I. Proskurovskii, S.V. Romanenko, V.V. Chupin, 2008, published in Pribory i Tekhnika Eksperimenta, 2008, No. 1, pp. 155–159.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagadei, V.A., Nefedtsev, E.V., Proskurovskii, D.I. et al. A thin-film resistive sensor for measuring atomic hydrogen flux density. Instrum Exp Tech 51, 142–146 (2008). https://doi.org/10.1134/S0020441208010193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441208010193

PACS numbers

Navigation