Skip to main content
Log in

Effect of Lithium Ions on the Properties of Calcium Sulfate Cement Materials

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied calcium sulfate (CS) based cement materials containing up to 5 mol % lithium cations. The presence of lithium ions has been shown to increase the solubility of the CS cements in Dulbecco’s solution, which is accompanied by an increase in the pH of extracts from 6.0 to 8.7. Lithium cations were detected in Dulbecco’s phosphate buffered saline during the first 24 h of the experiment, and a calcium phosphate layer was formed on the surface of the lithium-containing CS cements during the seventh day. The presence of lithium ions has been shown to cause a twofold decrease in the temperature of the transition from calcium sulfate dihydrate to the hemihydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Jiang, N., Qin, C.H., Ma, Y.F., Wang, L., and Yu, B., Possibility of one-stage surgery to reconstruct bone defects using the modified masquelet technique with degradable calcium sulfate as a cement spacer: a case report and hypothesis, Biomed. Rep., 2016, vol. 4, no. 3, pp. 374–378. https://doi.org/10.3892/br.2016.584

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hao, F., Qin, L., Liu, J., Chang, J., Huan, Z., and Wu, L., Assessment of calcium sulfate hemihydrate–tricalcium silicate composite for bone healing in a rabbit femoral condyle model, Mater. Sci. Eng., C, 2018, vol. 88, pp. 53–60. https://doi.org/10.1016/j.msec.2018.02.024

    Article  CAS  Google Scholar 

  3. Wang, P., Pi, B., Wang, J.N., Zhu, X.S., and Yang, H.L., Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres, Front. Mater. Sci., 2015, vol. 9, no. 1, pp. 51–65. https://doi.org/10.1007/s11706-015-0278-8

    Article  Google Scholar 

  4. Orsini, G., Ricci, J., Scarano, A., Pecora, G., Petrone, G., Iezzi, G., and Piattelli, A., Bone-defect healing with calcium-sulfate particles and cement: an experimental study in rabbit, J. Biomed. Mater. Res, 2004, vol. 68, no. 2, pp. 199–208. https://doi.org/10.1002/jbm.b.20012

    Article  CAS  Google Scholar 

  5. Qin, C.H., Zhou, C.H., Song, H.J., Cheng, G.Y., Zhang, H.A., Fang, J., and Tao, R., Infected bone resection plus adjuvant antibiotic-impregnated calcium sulfate versus infected bone resection alone in the treatment of diabetic forefoot osteomyelitis, BMC Musculoskeletal Disord., 2019, vol. 20, no. 1, pp. 1–8. https://doi.org/10.1186/s12891-019-2635-8

    Article  CAS  Google Scholar 

  6. Robinson, D., Alk, D., Sandbank, J., Farber, R., and Halperin, N., Inflammatory reactions associated with a calcium sulfate bone substitute, Ann. Transplantat., 1999, vol. 4, nos. 3–4, pp. 91–97. https://europepmc.org/article/med/10853791.

  7. Chai, F., Raoul, G., Wiss, A., Ferri, J., and Hildebrand, H.F., Bone substitutes: classification and concerns, Rev. Stomatol. Chir. Maxillo-Fac., 2011, vol. 112, no. 4, pp. 212–221. https://doi.org/10.1016/j.stomax.2011.06.003

    Article  CAS  Google Scholar 

  8. Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A.M., Benkirane-Jessel, N., and Offner, D., Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, J. Tissue Eng., 2018, vol. 9, p. 2041731418776819. https://doi.org/10.1177/2041731418776819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hesaraki, S., Nemati, R., and Nazarian, H., Physico-chemical and in vitro biological study of zinc-doped calcium sulfate bone substitute, J. Biomed. Mater. Res., 2009, vol. 91, no. 1, pp. 37–45. https://doi.org/10.1002/jbm.b.31371

    Article  CAS  Google Scholar 

  10. Dikici, B.A., Dikici, S., Karaman, O., and Oflaz, H., The effect of zinc oxide doping on mechanical and biological properties of 3D-printed calcium sulfate based scaffolds, Biocybern. Biomed. Eng., 2017, vol. 37, no. 4, pp. 733–741. https://doi.org/10.1016/j.bbe.2017.08.007

    Article  Google Scholar 

  11. Huang, L., Xie, Y.H., Xiang, H.B., Hou, Y.L., and Yu, B., Physiochemical properties of copper doped calcium sulfate in vitro and angiogenesis in vivo, Biotech. Histochem, 2021, vol. 96, no. 2, pp. 117–124. https://doi.org/10.1080/10520295.2020.1776392

    Article  CAS  PubMed  Google Scholar 

  12. Ma, Y., Li, Y., Hao, J., Ma, B., Di, T., and Dong, H., Evaluation of the degradation, biocompatibility and osteogenesis behavior of lithium-doped calcium polyphosphate for bone tissue engineering, Bio-Med. Mater. Eng., 2019, vol. 30, no. 1, pp. 23–36. https://doi.org/10.3233/BME-181030

    Article  CAS  Google Scholar 

  13. Li, L., Peng, X., Qin, Y., Wang, R., Tang, J., Cui, X., and Li, B., Acceleration of bone regeneration by activating Wnt/B-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis, Sci. Rep., 2017, vol. 7, no. 1, pp. 1–12. https://doi.org/10.1038/srep45204

    Article  CAS  Google Scholar 

  14. Taskaeva, Yu.S. and Bogatova, N.P., Lithium salts in experimental oncology, Sib. Nauchn. Med. Zh., 2019, vol. 39, no. 5, pp. 12–18. https://doi.org/10.15372/SSMJ20190502

    Article  Google Scholar 

  15. Xuemei Wang, Songsong Zhu, Xiaowen Jiang, Yunfeng Li, Donghui Song, and Jing Hu, Systemic administration of lithium improves distracted bone regeneration in rats, Calcif. Tissue Int., 2015, vol. 96, pp. 534–650. https://doi.org/10.1007/s00223-015-0004-7

    Article  CAS  PubMed  Google Scholar 

  16. Keselowsky, B.G., Collard, D.M., and García, A.J., Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding, Biomaterials, 2004, vol. 25, no. 28, pp. 5947–5954. https://doi.org/10.1016/j.bimaterials.2004.01.062

    Article  CAS  PubMed  Google Scholar 

  17. Smirnov, V.V., Khayrutdinova, D.R., Antonova, O.S., Goldberg, M.A., Smirnov, S.V., and Barinov, S.M., The effect of phosphate group replacement by sulfate groups on the phase formation in the synthesis of hydroxyapatite, Dokl. Chem., 2017, vol. 476, no. 1, pp. 223–225. https://doi.org/10.1134/S0012500817090063

    Article  CAS  Google Scholar 

  18. Butt, Yu.M., Sychev, M.M., and Timashev, V.V., Khimicheskaya tekhnologiya vyazhushchikh materialov (Chemical Technology of Binders), Timashev, V.V., Ed., Moscow: Vysshaya Shkola, 1980.

    Google Scholar 

  19. Kirgintsev, A.N., Rastvorimost’ neorganicheskikh veshchestv v vode (Solubility of Organic Substances in Water), Moscow: Ripol Klassik, 1972.

  20. Khayrutdinova, D.R., Goldberg, M.A., Krokhicheva, P.A., Antonova, O.S., Tyut’kova, Yu.B., Smirnov, S.V., Barinov, S.M., and Komlev, V.S., Peculiarities of solubility and cytocompatibility in vitro of bone cements on the basis of calcium sulfate containing phosphate ions, Inorg. Mater.: Appl. Res., 2022, vol. 13, no. 1, pp. 161–170. https://doi.org/10.1134/S2075113322010166

    Article  Google Scholar 

  21. Izquierdo-Barba, I., Salinas, A.J., and Vallet-Regí, M., In vitro calcium phosphate layer formation on sol–gel glasses of the CaO–SiO2 system, J. Biomed. Mater. Res., 1999, vol. 47, no. 2, pp. 243–250. https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<243::AID-JBM15>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  22. Koutsoukos, P.G. and Nancollas, G.H., Crystal growth of calcium phosphates – epitaxial considerations, J. Cryst. Growth, 1981, vol. 53, no. 1, pp. 10–19. https://doi.org/10.1016/0022-0248(81)90051-8

    Article  CAS  Google Scholar 

  23. Men’shikova, E.A. and Zhakova, U.V., Application of simultaneous thermal analysis in characterization of gypsum raw materials, Probl. Mineral., Petrogr. Metallogen. Nauchn. Chteniya Pamyati P.N. Chirvinskogo, 2008, no. 11, pp. 78–80.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education through the state research target for the Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (project no. 122012100413-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Khayrutdinova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayrutdinova, D.R., Goldberg, M.A., Krokhicheva, P.A. et al. Effect of Lithium Ions on the Properties of Calcium Sulfate Cement Materials. Inorg Mater 59, 311–320 (2023). https://doi.org/10.1134/S002016852303007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852303007X

Keywords:

Navigation