Skip to main content
Log in

Determining the Phase Composition of Copper Ferrite Samples by a Standardless Differential Dissolution Method

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper reports the use of a differential dissolution stoichiographic method for determining the phase composition of catalysts for ammine borane hydrolysis and hydrothermolysis [1, 2]. Cu1–xFe2+xO4 copper ferrite samples were prepared using layer-by-layer combustion, dried, and then calcined at different temperatures. We describe conditions that make it possible to detect and quantitatively determine various phases in the composition of amorphous and crystalline materials with the spinel structure and compare differential dissolution and X-ray diffraction results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Komova, O.V., Odegova, G.V., Gorlova, A.M., Bulavchenko, O.A., Pochtar, A.A., Netskina, O.V., and Simagina, V.I., Copper–iron mixed oxide catalyst precursors prepared by glycine-nitrate combustion method for ammonia borane dehydrogenation processes, Int. J. Hydrogen. Energy, 2019, vol. 44, no. 44, pp. 24277–24291. https://doi.org/10.1016/j.ijhydene.2019.07.137

    Article  CAS  Google Scholar 

  2. Komova, O.V., Simagina, V.I., Pochtar, A.A., Bulavchenko, O.A., Ishchenko, A.V., Odegova, G.V., Gorlova, A.M., Ozerova, A.M., Lipatnikova, I.L., Tayban, E.S., Mukha, S.A., and Netskina, O.V., Catalytic behavior of iron-containing cubic spinel in the hydrolysis and hydrothermolysis of ammonia borane, Materials, 2021, vol. 14, no. 18, p. 5422. https://doi.org/10.3390/ma14185422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yadav, R.S., Kuřitka, I., Vilcakova, J., Havlica, J., Masilko, J., Kalina, L., Tkacz, J., Hajdúchová, M., and Enev, V., Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 8, pp. 6245–6261. https://doi.org/10.1007/s10854-016-6305-4

    Article  CAS  Google Scholar 

  4. Güner, S., Esir, S., Baykal, A., Demir, A., and Bakis, Y., Magneto-optical properties of Cu1−xZnxFe2O4 nanoparticles, Superlattices Microstruct., 2014, vol. 74, pp. 184–197. https://doi.org/10.1016/J.SPMI.2014.06.021

    Article  Google Scholar 

  5. Casbeer, E., Sharma, V.K., and Li, X.Z., Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 2012, vol. 87, pp. 1–14. https://doi.org/10.1016/J.SEPPUR.2011.11.034

    Article  CAS  Google Scholar 

  6. Qin, Q., Liu, Y., Li, X., Sun, T., and Xu, Y., Enhanced heterogeneous fenton-like degradation of methylene blue by reduced CuFe2O4, RSC Adv., 2018, vol. 8, pp. 1071–1077. https://doi.org/10.1039/c7ra12488k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng, J., Su, L., Ma, Y., Ren, C., Guo, Q., and Chen, X., CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol, Chem. Eng. J., 2013, vol. 221, pp. 16–24. https://doi.org/10.1016/J.CEJ.2013.02.009

    Article  CAS  Google Scholar 

  8. Martins, N., Martins, L., Amorim, C., Amaral, V., and Pombeiro, A., Solvent-free microwave-induced oxidation of alcohols catalyzed by ferrite magnetic nanoparticles, Catalysts, 2017, vol. 7, no. 7, p. 222. https://doi.org/10.3390/catal7070222

    Article  CAS  Google Scholar 

  9. Sutka, A. and Mezinskis, G., Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci., 2012, vol. 6, no. 2, pp. 128–141.

    Article  Google Scholar 

  10. Simagina, V.I., Komova, O.V., Odegova, G.V., Netskina, O.V., Bulavchenko, O.A., Pochtar’, A.A., and Kayl, N.L., Study of copper–iron mixed oxide with cubic spinel structure, synthesized by the combustion method, Russ. J. Appl. Chem., 2019, vol. 92, no. 1, pp. 20–30. https://doi.org/10.1134/S107042721901003

    Article  CAS  Google Scholar 

  11. Pochtar’, A.A. and Malakhov, V.V., Differential dissolution stoichiographic method in investigation of the chemical composition of functional materials, Inorg. Mater., 2021, vol. 57, no. 4, pp. 435–442. https://doi.org/10.1134/S0020168521040129

    Article  Google Scholar 

  12. Pochtar’, A.A. and Malakhov, V.V., New stoichiographic methods for assessing spatial inhomogeneities in the composition and structure of solid substances and materials, Inorg. Mater., 2018, vol. 54, no. 7, pp. 749–755. https://doi.org/10.1134/s0020168518070130

    Article  CAS  Google Scholar 

  13. Malakhov, V.V., Specific features of the dynamic mode of differential dissolution as of a method of phase analysis, J. Anal. Chem., 2009, vol. 64, no. 11, pp. 1097–1107. https://doi.org/10.1134/S1061934809110021

    Article  CAS  Google Scholar 

  14. Malakhov, V.V., Boldyreva, N.N., Vlasov, A.A., and Dovlitova, L.S., Methodology and procedure of the stoichiographic analysis of solid inorganic substances and materials, J. Anal. Chem., 2011, vol. 66, no. 5, pp. 458–464. https://doi.org/10.1134/S1061934811030117

    Article  CAS  Google Scholar 

  15. Vertushkov, G.N. and Avdonin, V.N., Tablitsy dlya opredeleniya mineralov po fizicheskim i khimicheskim svoistvam (Tables for the Identification of Minerals from Their Physical and Chemical Properties), Moscow: Nedra, 1980, p. 294.

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the National Center for Catalyst Research (shared research facilities center).

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Boreskov Institute of Catalysis, Siberian Division, Russian Academy of Sciences, project no. AAAA-A21-121011390006-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pochtar’.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pochtar’, A.A., Komova, O.V. & Netskina, O.V. Determining the Phase Composition of Copper Ferrite Samples by a Standardless Differential Dissolution Method. Inorg Mater 59, 44–51 (2023). https://doi.org/10.1134/S0020168523010156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523010156

Keywords:

Navigation