Skip to main content
Log in

Preparation of Nanoporous Carbon from a Spherical NbC/C Nanocomposite and Its Properties

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanoporous carbon (carbide-derived carbon (CDC)) has been prepared via high-temperature chlorination of a spherical NbC/C nanocomposite synthesized by a new process [19]. The CDC has been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy in combination with energy dispersive X-ray analysis, and transmission electron microscopy. Using nitrogen adsorption–desorption measurements, we have determined the average pore size (3.627 nm), pore size distribution, and total pore volume (1.215 cm3/g) in the CDC and calculated its specific surface area by the BET method (817.282 m2/g). The electrochemical behavior of the nanoporous carbon (CDC) has been studied using half-cell cyclic voltammetry measurements in the potential sweep range from –1.0 to +1.0 V vs. carbon and impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Mishchenko, S.V. and Tkachev, A.G., Uglerodnye nanomaterialy. Proizvodstvo, svoistva, primenenie (Carbon Nanomaterials: Preparation, Properties, and Applications), Moscow: Mashinostroenie, 2008.

  2. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Inst. Kataliza, 1995.

  3. Fomkin, A.A., Pribylov, A.A., Tkachev, A.G., Memetov, N.R., Melezhik, A.V., Kucherova, A.E., Shubin, I.N., Pulin, A.L., Shkolin, A.V., Men’shchikov, I.E., Zhedulov, S.A., Murdmaa, K.O., and Artamonova, S.D., The influence of the structural and energetic characteristics of the microporous structure of carbon adsorbents on hydrogen adsorption, Colloid J., 2019, vol. 81, no. 5, pp. 607–612. https://doi.org/10.1134/S1061933X19050053

    Article  CAS  Google Scholar 

  4. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Khozina, E.V., and Grachev, V.A., Methane storage adsorption systems based on porous carbon structures, Usp. Khim., 2018, vol. 87, no. 10, pp. 950–983. https://doi.org/10.1070/RCR4807

    Article  CAS  Google Scholar 

  5. Ponomarev, A.N., RF Patent 2570794, 2014.

  6. Bandosz, T.J., Nanoporous carbons: looking beyond their perception as adsorbents, catalyst supports and supercapacitors, Chem. Rec., 2016, vol. 16, no. 1, pp. 205–218. https://doi.org/10.1002/tcr.201500231

    Article  CAS  PubMed  Google Scholar 

  7. Tolosa, A., Kruner, B., Fleischman, S., Jackel, N., Zeiger, M., Aslan, M., Grobelsek, I., and Presser, V., Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes, J. Mater. Chem. A, 2016, vol. 4, pp. 16003–16016. https://doi.org/10.1039/c6ta06224e

    Article  CAS  Google Scholar 

  8. Tang, J., Liu, J., Torad, N.L., Kimura, T. and Yamauchi, Y., Tailored design of functional nanoporous carbon materials toward fuel cell applications, Nano Today, 2014, vol. 9, no. 3, pp. 305–323. https://doi.org/10.1016/j.nantod.2014.05.003

    Article  CAS  Google Scholar 

  9. Yousheng Tao, Morinobu Endo, Michio Inagaki, and Katsumi Kaneko, Recent progress in the synthesis and applications of nanoporous carbon films, Mater. Chem., 2011, vol. 21, no. 2, pp. 313–323. https://doi.org/10.1039/c0jm01830a

    Article  CAS  Google Scholar 

  10. Popova, A.A., Aliev, R.E., and Shubin, I.N., Features of nanoporous carbon material synthesis, Adv. Mater. Technol., 2020, vol. 3, no. 19, pp. 28–32. https://doi.org/10.17277/amt.2020.03.pp.028-032

    Article  CAS  Google Scholar 

  11. Davydova, A.A., Raksha, E.V., Glazunova, V.A., Oskolkova, O.N., Gnatovskaya, V.V., Sukhov, P.V., Burkhovetskii, V.V., Volkova, G.K., Berestneva, Yu.V., and Savos’kin, M.V., Synthesis and properties of graphite nitrate cointercalation compounds with carboxylic acid esters, Russ. J. Inorg. Chem., 2021, vol. 66, no. 3, pp. 324–331. https://doi.org/10.1134/S0036023621030062

    Article  CAS  Google Scholar 

  12. Voronova, M.I., Surov, O.V., Rubleva, N.V., and Zakharov, A.G., Sol–gel synthesis of porous carbon materials using nanocrystalline cellulose as a template, Russ. J. Inorg. Chem., 2022, vol. 67, no. 3, pp. 395–400. https://doi.org/10.1134/S0036023622030159

    Article  CAS  Google Scholar 

  13. Simonov-Emel’yanov, I.D., Shembel’, N.L., Nikishina, E.E., Lebedeva, E.N., Nikitina, A.V., Drobot, D.V., Simonenko, E.P., Simonenko, N.P., Sevast’yanov, V.G., and Kuznetsov, N.T., Preparation of highly porous NbxTa1 – xC ceramics from polymer-matrix composite materials based on a phenol-formaldehyde binder and low hydrated hydroxide of niobium and tantalum, Inorg. Mater., 2015, vol. 51, no. 10, pp. 1066–1072. https://doi.org/10.1134/S0020168515100143

    Article  CAS  Google Scholar 

  14. Gupta, A., Mittal, M., Singh, M.K., Suib, S.L., and Pandey, O.P., Low temperature synthesis of NbC/C nano-composites as visible light photoactive catalyst, Sci. Rep., 2018, vol. 8, p. 13597. https://doi.org/10.1038/s41598-018-31989-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta, A. and Pandey, O.P., NbC/C heterojunction for efficient photodegradation of methylene blue under visible irradiation, Solar Energy, 2019, vol. 183, no. 1, pp. 398–409. https://doi.org/10.1016/j.solener.2019.03.040

    Article  CAS  Google Scholar 

  16. Atchison, J., Zeiger, M., Tolosa, A., Funke, L.M., Jaeckel, N., and Presser, V., Electrospinning of ultrafine metal oxide/carbon and metal carbide/carbon nanocomposite fibers, RSC Adv., 2015, vol. 5, pp. 35683–35692. https://doi.org/10.1039/c5ra05409e

    Article  CAS  Google Scholar 

  17. Zhang, H.M., Liu, J., Tian, Z.F., Ye, Y.X., Cai, Y.Y., Liang, C.H., and Terabe, K.A., General strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode, Carbon, vol. 100, pp. 590–599. https://doi.org/10.1016/j.carbon.2016.01.047

  18. Won, H.I., Hayk, N., Won, C.W., and Lee, H.H., Simple synthesis of nano-sized refractory metal carbides by combustion process, J. Mater. Sci., 2011, vol. 46, pp. 6000–6006. https://doi.org/10.1007/s10853-011-5562-0

    Article  CAS  Google Scholar 

  19. Il’in, E.G., Parshakov, A.S., Iskhakova, L.D., Gryzlov, D.Yu., and Milovich, F.O., A new method for the synthesis of a NbC/C nanocomposite, Inorg. Mater., 2022, vol. 58, no. 2, pp. 190–198. https://doi.org/10.1134/S0020168522020066

    Article  Google Scholar 

  20. Il’in, E.G. and Parshakov, A.S., RF Patent 2756759, 2021.

  21. Il’in, E.G., Parshakov, A.S., and Iskhakova, L.D., The studies of NbCl5 with acetylene reaction products as a new precursor for simple and economical synthesis of ceramic NbC/C nanocomposite, Advances in Synthesis and Complexing: 5th Int. Conf., Moscow, 2019, vol. 2, p. 25.

  22. Il’in, E.G., Parshakov, A.S., and Iskhakova, L.D., New precursor to a composite of nanoparticulate niobium carbide and carbon (NbC/C), XXI Mendeleevskii s’’ezd (XXI Mendeleev Meet.), St. Petersburg, 2019, vol. 2a, p. 82.

  23. Knight, D.S. and White, W.B., Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 1989, vol. 4, no. 2, pp. 385–393. https://doi.org/10.1557/JMR.1989.0385

    Article  CAS  Google Scholar 

  24. Nemanich, R.J. and Solin, S.A., First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B: Condens. Matter Mater. Phys., 1979, vol. 20, no. 2, pp. 392–401. https://doi.org/10.1103/PhysRevB.20.392

    Article  CAS  Google Scholar 

  25. Spengler, W. and Kaiser, R., First and second order Raman scattering in transition metal compounds, Solid State Commun., 1976, vol. 18, no. 7, pp. 881–884. https://doi.org/10.1016/0038-1098(76)90228-3

    Article  CAS  Google Scholar 

  26. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  27. Sing, K.S.W. and Williams, R.T., Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorpt. Sci. Technol., 2004, vol. 22, no. 10, pp. 773–782. https://doi.org/10.1260/0263617053499032

    Article  CAS  Google Scholar 

  28. Kotz, R. and Carlen, M., Principles and applications of electrochemical capacitors, Electrochim. Acta, 2000, vol. 45, pp. 2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.I. Korepanov (Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences) for obtaining the Raman spectra.

The support from the Russian Foundation for Basic Research and the Russian Federation Ministry of Science and Higher Education is gratefully acknowledged.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-11083) and in part by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Il’in.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, E.G., Parshakov, A.S., Kottsov, S.Y. et al. Preparation of Nanoporous Carbon from a Spherical NbC/C Nanocomposite and Its Properties. Inorg Mater 58, 1130–1136 (2022). https://doi.org/10.1134/S002016852211005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852211005X

Keywords:

Navigation