Skip to main content
Log in

Synthesis of Si3N4-Based Powder Composites for Ceramic Fabrication by Spark Plasma Sintering

  • Published:
Inorganic Materials Aims and scope

Abstract—

There were examined four ways of applying sintering additives (Y2O3 : Al2O3 = 3 : 5) to particles of commercial Si3N4 powders differing in particle size composition: amorphous nanopowder and microcrystalline α-Si3N4 powder. The oxide sintering additive coating was produced in two steps: wet chemical preparation of the starting Si3N4 powder with compounds containing yttrium and aluminum ions and annealing of the resultant powder composites at a temperature of 1000°C in air. The way the sintering addition is applied and the particle size composition of the starting Si3N4 powder have been shown to influence the composition of the crystalline phases forming during annealing. The optimal process for obtaining Si3N4 ceramics with improved physical and mechanical properties is spray drying, which makes it possible to obtain spherical agglomerates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Knoch, H. and Heinrich, J., Mechanical properties of silicon nitride, Materialwiss. Werkstofftech., 1980, vol. 11, no. 10, pp. 361–367. https://doi.org/10.1002/mawe.19800111006

    Article  CAS  Google Scholar 

  2. Samsonov, G.V., Nitridy (Nitrides), Kiev: Naukova Dumka, 1969, p. 380.

    Google Scholar 

  3. Deeley, G.G., Herbert, J.M., and Moore, N.C., Dense silicon nitride, Powder Metall., 1961, vol. 4, no. 8, pp. 145–151. https://doi.org/10.1179/pom.1961.4.8.011

    Article  Google Scholar 

  4. Richerson, D.W., Historical review of addressing the challenges of use of ceramic components in gas turbine engines, Proc. ASME Turbo Expo, American Society of Mechanical Engineers Digital Collection, 2006, vol. 2, pp. 241–254. https://doi.org/10.1115/GT2006-90330

  5. Pyzik, A.J. and Carroll, D.F., Technology of self-reinforced silicon nitride, Ann. Rev. Mater. Sci., 1994, vol. 24, no. 1, pp. 189–214.

    Article  CAS  Google Scholar 

  6. Loehman, R.E. and Rowcliffe, D.J., Sintering of Si3N4–Y2O3–Al2O3, J. Am. Ceram. Soc., 1980, vol. 63, nos. 3–4, pp. 144–148. https://doi.org/10.1111/j.1151-2916.1980.tb10679.x

    Article  CAS  Google Scholar 

  7. Podobeda, L.G., Effect of impurities on the properties of silicon nitride materials, Sov. Powder Metall. Met. Ceram., 1979, vol. 18, no. 1, pp. 59–63.

    Article  Google Scholar 

  8. Tokita, M., Progress of spark plasma sintering ceramics applications and industrialization, Ceramic, 2021, vol. 4, no. 2, pp. 160–198. https://doi.org/10.3390/ceramics4020014

    Article  CAS  Google Scholar 

  9. Vrolijk, J.W.G.A., Willems, J.W.M.M., and Metselaar, R., Coprecipitation of yttrium and aluminium hydroxide for preparation of yttrium aluminium garnet, J. Eur. Ceram. Soc., 1990, vol. 6, no. 1, pp. 47–51. https://doi.org/10.1016/0955-2219(90)90034-D

    Article  CAS  Google Scholar 

  10. Sordelet, D.J. et al., Synthesis of yttrium aluminum garnet precursor powders by homogeneous precipitation, J. Eur. Ceram. Soc., 1994, vol. 14, no. 2, pp. 123–130. https://doi.org/10.1016/0955-2219(94)90100-7

    Article  CAS  Google Scholar 

  11. Manalert, R. and Rahaman, M.N., Sol–gel processing and sintering of yttrium aluminum garnet (YAG) powders, J. Mater. Sci., 1996, vol. 31, no. 13, pp. 3453–3458. https://doi.org/10.1007/BF00360748

    Article  CAS  Google Scholar 

  12. Li, J.-G. et al., Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant, J. Eur. Ceram. Soc., 2000, vol. 20, nos. 14–15, pp. 2395–2405. https://doi.org/10.1016/S0955-2219(00)00116-3

    Article  CAS  Google Scholar 

  13. Zhang, N., Ru, H.Q., Cai, Q.K., and Sun, X.D., The influence of the molar ratio of Al2O3 to Y2O3 on sintering behavior and the mechanical properties of a SiC–Al2O3–Y2O3 ceramic composite, Mater. Sci. Eng., A, 2008, vol. 486, pp. 262–266. https://doi.org/10.1016/j.msea.2007.09.052

    Article  CAS  Google Scholar 

  14. Sunde, T.O.L., Grande, T., and Einarsrud, M.A., Modified Pechini synthesis of oxide powders and thin films, in Handbook of Sol–Gel Science and Technology, 2016, pp. 1–30.

  15. Dinnebier, R. and Billinge, S., Powder Diffraction. Theory and Practice, Cambridge: RSC, 2008, p. 605.

    Book  Google Scholar 

  16. Ziegler, G., Heinrich, J., and Wötting, G., Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, J. Mater. Sci., 1987, vol. 22, no. 9, pp. 3041–3086. https://doi.org/10.1007/BF01161167

    Article  CAS  Google Scholar 

  17. Abell, J.S. et al., An investigation of phase stability in the Y2O3–Al2O3 system, J. Mater. Sci., 1974, vol. 9, no. 4, pp. 527–537. https://doi.org/10.1007/BF02387524

    Article  CAS  Google Scholar 

  18. Dolekcekic, E., Pomeroy, M.-J., and Hampshire, S., Influence of amount of nitrogen on crystallisation of Y-sialon glasses: in-situ XRD analysis, Key Eng. Mater., 2005, vol. 287, pp. 293–298. https://doi.org/10.4028/www.scientific.net/KEM.287.293

    Article  CAS  Google Scholar 

  19. Kroll, P. and Milko, M., Theoretical investigation of the solid state reaction of silicon nitride and silicon dioxide forming silicon oxynitride (Si2N2O) under pressure, Z. Anorg. Allg. Chem., 2003, vol. 629, pp. 1737–1750.

    Article  CAS  Google Scholar 

  20. Popovich, N.V., Orlova, Yu.E., Anen’eva, A.S., et al., Low-temperature synthesis of coatings in the Y2O3–Al2O3–SiO2 system, Izv. Volgogr. Gos. Tekh. Univ., 2011, vol. 75, no. 2, pp. 160–164.

    Google Scholar 

  21. Kahlenberg, V., Wertl, W., Tobbens, D.M., et al., Rietveld analysis and Raman spectroscopic investigations on α-Y2Si2O7, Z. Anorg. Allg. Chem., 2008, vol. 634, pp. 1166–1172.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The powders were examined by transmission electron microscopy using equipment at the Materials Research and Metallurgy Shared Facilities Center, Moscow Institute of Steel and Alloys (National University of Science and Technology) (Russian Federation Ministry of Science and Higher Education, project no. 075-15-2021-696).

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-33-60084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Andreev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, P.V., Alekseeva, L.S., Rostokina, E.E. et al. Synthesis of Si3N4-Based Powder Composites for Ceramic Fabrication by Spark Plasma Sintering. Inorg Mater 58, 1098–1104 (2022). https://doi.org/10.1134/S0020168522100016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522100016

Keywords:

Navigation