Skip to main content
Log in

Structure and Phase Formation of a Ti–Al–Si Based Alloy Prepared by Self-Propagating High-Temperature Synthesis Compaction

  • Published:
Inorganic Materials Aims and scope

Abstract

A lightweight Ti20Al3Si9-based intermetallic alloy with porosity under 3% has been prepared for the first time by compaction in the self-propagating high-temperature synthesis (SHS) regime. The microstructure of the synthesis product has been studied by scanning electron microscopy and time-of-flight mass spectrometry. The content of the major phase, Ti20Al3Si9, in the alloy is 87 wt %, and that of the Ti3Al phase is 13 wt %. A mechanism has been proposed for phase formation in the ternary intermetallic system Ti–Al–Si during the SHS process. The increased microhardness of the alloy (9905 ± 450 MPa) is due to the formation of the Ti20Al3Si9 phase, rich in Si (about 28.13 at %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Leyens, C. and Peters, M., Titanium and Titanium Alloys: Fundamentals and Applications, Leyens, C. and Peters, M., Eds., Weinheim: Wiley, 2003.

    Book  Google Scholar 

  2. Kothari, K. and Radhakrishnan, R., Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerospace Sci., 2012, vol. 55, pp. 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001

    Article  Google Scholar 

  3. Mondolfo, L.F., Aluminium Alloys: Structure and Properties, London: Butterworths, 1976, pp. 385–387.

    Google Scholar 

  4. Koch, C.C., Intermetallic matrix composites prepared by mechanical alloying—a review, Mater. Sci. Eng., A, 1998, vol. 244, pp. 39–48.

    Article  Google Scholar 

  5. Knaislova, A., Novak, P., Cabibbo, M., Prusa, F., Paoletti, C., Jaworska, L., and Vojtech, D., Combination of reaction synthesis and spark plasma sintering in production of Ti–Al–Si alloys, J. Alloys Compd., 2018, vol. 752, no. 5, pp. 317–326. https://doi.org/10.1016/j.jallcom.2018.04.187

    Article  CAS  Google Scholar 

  6. Lee, J.-H., Park, H.-K., Kim, J.-H., Jang, J.-H., Hong, S.-K., and Oh, I.-H., Constitutive behavior and microstructural evolution in Ti–Al–Si ternary alloys processed by mechanical milling and spark plasma sintering, J. Mater. Res. Technol., 2020, vol. 9, no. 2, pp. 2247–2258. https://doi.org/10.1016/j.jmrt.2019.12.056

    Article  CAS  Google Scholar 

  7. Wang, Y.J., Chen, T.J., Zhang, S.Q., Qin, Y.H., and Zhang, X.Z., Effects of partial remelting on microstructure of Al–Si–Ti bulk alloy prepared by cold pressing mixed powders, Mater. Trans., 2016, vol. 57, no. 7, pp. 1124–1133. https://doi.org/10.2320/matertrans.M2016070

    Article  CAS  Google Scholar 

  8. Gao, T., Li, P., Li, Y., and Liu, X., Influence of Si and Ti contents on the microstructure, microhardness and performance of TiAlSi intermetallics in Al–Si–Ti alloys, J. Alloys Compd., 2011, vol. 509, pp. 803–817.

    Article  Google Scholar 

  9. Lee, J.-H., Park, H.-K., Jang, J.-H., Hong, S.-K., and Oh, I.-H., Amorphization/crystallization behaviors of Ti50Al45Si5 multi-component powder treated by mechanical alloying and subsequent heat treatment, J. Alloys Compd., 2019, vol. 797, pp. 612–621. https://doi.org/10.1016/j.jallcom.2019.05.047

    Article  CAS  Google Scholar 

  10. Lazarev, P.A., Sytschev, A.E., Boyarchenko, O.D., and Aborkin, A.V., Self-propagating high-temperature synthesis in the Ti–Al–Si system, Inorg. Mater., 2021, vol. 57, no. 11, pp. 1201–1207. https://doi.org/10.1134/S002016852111008X

    Article  CAS  Google Scholar 

  11. Pityulin, A.N., Forced compaction in self-propagating high-temperature synthesis processes, in Samorasprostranyayushchiisya vysokotemperaturnyi sintez: teoriya i praktika (Self-Propagating High-Temperature Synthesis: Theory and Practice), Chernogolovka: Territoriya, 2001, pp. 333–353.

  12. Shcherbakov, V.A., Gryadunov, A.N., and Alymov, M.I., Synthesis and characteristics of B4C–ZrB2 composites, Lett. Mater., 2017, vol. 7, no. 4, pp. 398–401. https://doi.org/10.22226/2410-3535-2017-4-398-401

    Article  Google Scholar 

  13. Kurzina, I.A., Kalashnikov, M.P., Popova, N.A., and Savkin, K.P., Specific features of α2-Ti3Al formation in ion-doped α-titanium layers, Fundam. Probl. Sovrem. Materialoved., 2012, vol. 9, no. 4, pp. 494–502. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000463186.

  14. Kurzina, I.A., Kozlov, E.V., Popova, N.A., Kalashnikov, M.P., Nikonenko, E.L., Savkin, K.P., Oks, E.M., and Sharkeev, Yu.P., Modifying the structural phase state of fine-grained titanium under conditions of ion irradiation, Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, no. 11, pp. 1238–1245.

    Article  CAS  Google Scholar 

  15. Knaislová, A., Novák, P., Kopeček, J., and Průša, F., Properties comparison of Ti–Al–Si alloys produced by various metallurgy methods, Materials, 2019, vol. 12, no. 19, p. 3084. https://doi.org/10.3390/ma12193084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.D. Kovalev for performing the X-ray diffraction analysis and O.V. Belousova for measuring the porosity and density of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Lazarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, P.A., Busurina, M.L., Gryadunov, A.N. et al. Structure and Phase Formation of a Ti–Al–Si Based Alloy Prepared by Self-Propagating High-Temperature Synthesis Compaction. Inorg Mater 58, 1005–1010 (2022). https://doi.org/10.1134/S0020168522090096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522090096

Keywords:

Navigation