Skip to main content
Log in

Self-Propagating High-Temperature Synthesis in the Ti–Al–Si System

  • Published:
Inorganic Materials Aims and scope

Abstract

Lightweight Ti–Al–Si intermetallic alloys with the compositions (wt %) 37Ti–50Al–13Si, 74.1Ti–6.3Al–19.6Si, and 41.53Ti–16.71Al–41.76Si have been prepared for the first time by self-propagating high-temperature synthesis (SHS). Using a 74.1 wt % Ti + 6.3 wt % Al + 19.6 wt % Si mixture, we have obtained a single-phase material with the composition Ti5Al0.75Si2.25, having a compressive strength of 19 MPa, average microhardness HVμ = 10 690 MPa, porosity of 41.5%, and hydrostatic density of 2.3 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Leyens, C. and Peters, M., Titanium and Titanium Alloys: Fundamentals and Applications, Leyens, C. and Peters, M., Eds., Weinheim: Wiley, 2003, p. 532.

    Book  Google Scholar 

  2. Kothari, K., Radhakrishnan, R., and Wereley, N.M., Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerospace Sci., 2012, vol. 55, pp. 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001

    Article  Google Scholar 

  3. Mondolfo, L.F., Aluminium Alloys: Structure and Properties, London: Butterworths, 1976, pp. 385–387.

    Google Scholar 

  4. Koch, C.C., Intermetallic matrix composites prepared by mechanical alloying—a review, Mater. Sci. Eng., A, 1998, vol. 244, no. 1, pp. 39–48.

    Article  Google Scholar 

  5. Knaislova, A., Novak, P., Cabibbo, M., Prusa, F., Paoletti, C., Jaworska, L., and Vojtech, D., Combination of reaction synthesis and spark plasma sintering in production of Ti–Al–Si alloys, J. Alloys Compd., 2018, vol. 752, no. 5, pp. 317–326. https://doi.org/10.1016/j.jallcom.2018.04.187

    Article  CAS  Google Scholar 

  6. Lee, J.-H., Park, H.-K., Kim, J.-H., Jang, J.-H., Hong, S.-K., and Oh, I.-H., Constitutive behavior and microstructural evolution in Ti–Al–Si ternary alloys processed by mechanical milling and spark plasma sintering, J. Mater. Res. Technol., 2020, vol. 2, pp. 2247–2258. https://doi.org/10.1016/j.jmrt.2019.12.056

    Article  CAS  Google Scholar 

  7. Wang, Y.J., Chen, T.J., Zhang, S.Q., Qin, Y.H., and Zhang, X.Z., Effects of partial remelting on microstructure of Al–Si–Ti bulk alloy prepared by cold pressing mixed powders, Mater. Trans., 2016, vol. 57, no. 7, pp. 1124–1133. https://doi.org/10.2320/matertrans.M2016070

    Article  CAS  Google Scholar 

  8. Brukl, C., Nowotny, H., Schob, O., and Benesovsky, F., Die Kristallstruckturen von TiSi, Ti(Al, Si)2 und Mo(Al, Si)2, Monatsh. Chem., 1961, vol. 92, pp. 781–788. https://doi.org/10.1007/BF00918638

    Article  CAS  Google Scholar 

  9. Aluminium–silicon–titanium, Ternary Alloys—a Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Petzow, G. and Effenberg, G., Eds., New York: VCH, 1990, vol. 8, pp. 283–290.

    Google Scholar 

  10. Perrot, P., Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data, Landolt–Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry, Berlin: Springer, 2006, vol. 11(A), part 4.

  11. Lee, J.-H., Park, H.-K., Jang, J.-H., Hong, S.-K., and Oh, I.-H., Amorphization crystallization behaviors of Ti50Al45Si5 multi-component powder treated by mechanical alloying and subsequent heat treatment, J. Alloys Compd., 2019, vol. 797, pp. 612–621. https://doi.org/10.1016/j.jallcom.2019.05.047

    Article  CAS  Google Scholar 

  12. Siegrist, T., Crystallographica – a software toolkit for crystallography, J. Appl. Crystallogr., 1997, vol. 30, pp. 418–419. http://www.crystallographica.co.uk.

    Article  Google Scholar 

  13. International Centre for Diffraction Data. http://www.icdd.com/.

  14. Aleksandrov, V.V., Gruzdev, V.A., and Kovalenko, Yu.A., Thermal conductivity of some aluminum-based SHS systems, Fiz. Goreniya Vzryva, 1985, no. 1, pp. 98–104.

  15. Zinov’ev, E.V., Teplofizicheskie svoistva materialov pri vysokikh temperaturakh (High-Temperature Thermophysical Properties of Materials), Moscow: Metallurgiya, 1989, p. 221.

  16. Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, L.A., and Tsalkov, V.N., Teplofizicheskie svoistva komponentov goryuchikh sistem. Spravochnik (Thermophysical Properties of Components of Combustible Systems: A Handbook), Simin, N.A., Ed., 1992, p. 29.

    Google Scholar 

  17. Raman, A. and Schubert, K., On the constitution of some alloy series related to 3 TiAl: II. Investigation on some systems Ti–Al–Si, Z. Metallkd., 1965, vol. 56, pp. 44–52.

    CAS  Google Scholar 

  18. https://materialsproject.org/materials/mp-1217242/.

  19. Knaislová, A., Novák, P., Kopeček, J., and Průša, F., Properties comparison of Ti–Al–Si alloys produced by various metallurgy methods, Materials, 219, vol. 12, no. 19, paper 3084. https://doi.org/10.3390/ma12193084

  20. https://materialsproject.org/materials/mp-1217089/.

  21. Ratnikov, V.I., Borovinskaya, I.P., and Prokudina, V.K., Pilot apparatus for SHS processes: safety and standardization, Izv. Vyssh. Uchebn. Zaved., Ser.: Poroshk. Metall. Funkts. Pokrytiya, 2013, no. 1, pp. 34–41. https://doi.org/10.17073/1997-308X-2013-1-34-41

  22. Novak, P., Michalcova, A., Serak, J., Vojtech, D., Fabian, T., Randakova, S., Prusa, F., Knotek, V., and Novak, M., Preparation of Ti–Al–Si alloys by reactive sintering, J. Alloys Compd., 2009, vol. 470, nos. 1–2, pp. 123–126. https://doi.org/10.1016/j.jallcom.2008.02.046

    Article  CAS  Google Scholar 

  23. Raghavan, V., Al–Si–Ti (aluminum–silicon–titanium), J. Phase Equilib. Diffus., 2009, vol. 30, no. 1, pp. 82–83.

    Article  CAS  Google Scholar 

  24. Al–Si–Ti isothermal section of ternary phase diagram, Inorganic Solid Phases, Pauling File Database, Villars, P., Ed., Heidelberg: Springer, 2016. https://materials.springer.com/isp/phase-diagram/docs/c_0976531

    Google Scholar 

  25. Liu, S., Weitzer, F., Schuster, J.C., Krendelsberger, N., and Du, Y., On the reaction scheme and liquidus surface in the ternary system Al–Si–Ti, Int. J. Mater. Res., 2008, vol. 99, no. 7, pp. 705–711. https://doi.org/10.3139/146.101702

    Article  CAS  Google Scholar 

  26. Vadchenko, S.G., Ponomarev, V.I., and Sychev, A.E., Self-propagating high-temperature synthesis of Ti–Si–Al–C based porous materials, Fiz. Goreniya Vzryva, 2006, vol. 42, no. 2, pp. 53–60.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.D. Kovalev for performing the X-ray diffraction analysis and O.V. Belousova for measuring the porosity and density of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Lazarev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, P.A., Sytschev, A.E., Boyarchenko, O.D. et al. Self-Propagating High-Temperature Synthesis in the Ti–Al–Si System. Inorg Mater 57, 1201–1207 (2021). https://doi.org/10.1134/S002016852111008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852111008X

Keywords:

Navigation