Skip to main content
Log in

Reaction of Niobium Pentachloride with Sodium Borohydride in Ionic Melts

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied reaction between mechanochemically preactivated NbCl5 and NaBH4 powders in the molar ratio 1 : 2.4 at temperatures from 873 to 1073 K and reaction times from 8 to 15 h under an argon pressure of 4 MPa in ionic melts (Na2B4O7, КСl, KBr,, and 50 mol % NaCl + 50 mol % KCl or 58 mol % LiCl + 42 mol % KCl eutectic mixture). The results demonstrate that the use of the ionic melts makes it possible to obtain almost spherical niobium diboride nanoparticles with an average size from ~12 to 17 nm (depending on reaction temperature), hexagonal structure (sp. gr. P6/mmm), and unit-cell parameters a = 0.3105–0.3125 nm and c = 0.3269–0.3294 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Chelyabinsk: Metallurgiya, 1991.

  2. Carenco, S., Portehault, D., Boissiere, C., Mezailles, N., and Sanchez, C., Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev., 2013, vol. 113, no. 10, pp. 7981–8065. https://doi.org/10.1021/cr400020d

    Article  CAS  PubMed  Google Scholar 

  3. Andrievskii, R.A. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove. Spravochnik (Strength of Refractory Compounds and Related Materials: A Handbook), Chelyabinsk: Metallurgiya, 1989.

  4. Prokhorov, A.M., Lyakishev, N.P., Burkhanov, G.S., and Dement’ev, V.A., High-purity transition-metal borides: promising materials for present-day technology, Inorg. Mater., 1996, vol. 32, no. 11, pp. 1195–1201.

    CAS  Google Scholar 

  5. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments, Fundamentals and Applications, Berlin: Springer, 2016. https://doi.org/10.1007/978-3-319-25331-2

  6. Matsudaira, T., Itoh, H., and Naka, S., Synthesis of niobium boride powder by solid-state reaction between niobium and amorphous boron, J. Less-Common Met., 1989, vol. 155, no. 2, pp. 207–214. https://doi.org/10.1016/0022-5088(89)90229-4

    Article  CAS  Google Scholar 

  7. Kravchenko, S.E., Vinokurov, A.A., Dremova, N.N., Nadkhina, S.E., and Shilkin, S.P., Synthesis of niobium diboride nanoparticles by the reaction of amorphous boron with niobium in KCl and Na2B4O7 ionic melts, Russ. J. Gen. Chem., 2021, vol. 91, no. 2, pp. 302–304. https://doi.org/10.1134/S1070363221020195

    Article  CAS  Google Scholar 

  8. Kravchenko, S.E., Kovalev, D.Yu., Vinokurov, A.A., Dremova, N.N., Ivanov, A.V., and Shilkin, S.P., Synthesis and thermal oxidation stability of nanocrystalline niobium diboride, Inorg. Mater., 2021, vol. 57, no. 10, pp. 1005–1014. https://doi.org/10.1134/S002016852110006X

    Article  CAS  Google Scholar 

  9. Peshev, P., Leyarovska, L., and Bliznakov, G., On the borothermic preparation of some vanadium, niobium and tantalum borides, J. Less-Common Met., 1968, vol. 15, pp. 259–267. https://doi.org/10.1016/0022-5088(68)90184-7

    Article  CAS  Google Scholar 

  10. Jha, M., Ramanujachary, K.V., Lofland, S.T., Gupta, G., and Ganguli, P.K., Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium, J. Dalton Trans., 2011, vol. 40, pp. 7879–7888. https://doi.org/10.1039/c1dt10468c

    Article  CAS  Google Scholar 

  11. Maeda, H., Yoshikawa, T., Kusakabe, K., and Morooka, S., Synthesis of ultrafine NbB2 powder by rapid carbothermal reduction in a vertical tubular reactor, J. Alloys Compd., 1994, vol. 215, pp. 127–334. https://doi.org/10.1016/0925-8388(94)90829-X

    Article  CAS  Google Scholar 

  12. Gai, P., Yang, Z., Shi, L., Chen, L., Zhao, A., Gu, Y., and Qian, Y., Low temperature synthesis of NbB2 nanorods by a solid-state reaction route, Mater. Lett., 2005, vol. 59, pp. 3550–3552. https://doi.org/10.1016/j.matlet.2005.07.051

    Article  CAS  Google Scholar 

  13. Ma, J., Du, Y., Wu, M., Li, G., Feng, Z., Guo, M., Sun, Y., Song, W., Lin, M., and Guo, X., A simple inorganic-solvent route to nanocrystalline niobium diboride, J. Alloys Compd., 2009, vol. 468, pp. 473–476. https://doi.org/10.1016/j.jallcom.2008.01.021

    Article  CAS  Google Scholar 

  14. Portehaut, D., Devis, S., Beaunier, P., Gervais, C., Giordano, C., Sanchez, C., and Antonietti, M., A general solution route toward metal boride nanocrystals, Angew. Chem., 2011, vol. 50, pp. 3262–3265. https://doi.org/10.1002/ange.201006810

    Article  Google Scholar 

  15. Jothi, P.R., Yubuta, K., and Fokwa, B.P.T., A simple, general synthetic route toward nanoscale transition metal borides, Adv. Mater., 2018, vol. 30, no. 14, paper 1704181. https://doi.org/10.1002/adma.201704181

  16. Jafari, M., Tajizadegan, H., Golabgir, M.H., Chami, A., and Torabio, O., Investigation on mechanochemical behavior of Al/Mg–B2O3–Nb system reactive mixtures to synthesize niobium diboride, J. Refract. Met. Hard Mater., 2015, vol. 50, pp. 86–92. https://doi.org/10.1016/j.ijrmhm.2014.10.017

    Article  CAS  Google Scholar 

  17. Balci, Ö., Aĝaoĝullari, D., Övecoĝlu, M.L., and Duman, I., Synthesis of niobium borides by powder metallurgy methods using Nb2O5, B2O3 and Mg blends, Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 747–758. https://doi.org/10.1016/S1003-6326(16)64165-1

    Article  CAS  Google Scholar 

  18. Motojima, S., Sugiyama, K., and Takahashi, Y., Chemical vapor deposition of niobium diboride (NbB2), J. Cryst. Growth, 1975, vol. 30, pp. 233–239. https://doi.org/10.1016/0022-0248(75)90094-9

    Article  CAS  Google Scholar 

  19. Gupta, A., Singhal, V., and Pandey, O.P., Facile in-situ synthesis of NbB2 nanoparticles at low temperature, J. Alloys Compd., 2018, vol. 736, pp. 306–313. https://doi.org/10.1016/j.jallcom.2017.10.257

    Article  CAS  Google Scholar 

  20. Kravchenko, S.E., Torbov, V.I., and Shilkin, S.P., Nanosized zirconium diboride: synthesis and properties, Russ. J. Inorg. Chem., 2011, vol. 56, no. 4, pp. 506–509. https://doi.org/10.1134/S0036023611040164

    Article  CAS  Google Scholar 

  21. Andrievski, R.A., Kravchenko, S.E., and Shilkin, S.P., Some properties of ultrafine zirconium boride powders and films, Jpn. J. Appl. Phys., 1994, vol. 10, pp. 198–199.

    CAS  Google Scholar 

  22. Cheng, Y., Choi, S., and Watanabe, T., Synthesis of niobium boride nanoparticle by rf thermal plasma, J. Phys.: Conf. Ser., 2013, vol. 441, paper 012031. https://doi.org/10.1088/1742-6596/441/1/012031

  23. Chen, B., Yang, L., Heng, H., Chen, J., Zhang, L., Xu, L., Qian, Y., and Yang, J., Additive-assisted synthesis of boride, carbide and nitride micro/nanocrystals, J. Solid State Chem., 2012, vol. 194, pp. 219–224. https://doi.org/10.1016/j.jssc.2012.05.032

    Article  CAS  Google Scholar 

  24. Vinokurov, A.A., Dremova, N.N., Nadkhina, S.E., Ivanov, A.V., and Shilkin, S.P., Formation of niobium diboride nanoparticles by the reaction of niobium pentachloride with sodium borohydride in ionic melts of alkali metal halides, Russ. J. Gen. Chem., 2022, vol. 92, no. 2, pp. 272–275. https://doi.org/10.1134/S1070363222020189

    Article  CAS  Google Scholar 

  25. Fokin, V.N., Fokina, E.E., and Shilkin, S.P., Synthesis of coarsely crystalline metal hydrides, Russ. J. Gen. Chem., 1996, vol. 66, no. 8, pp. 1210–1212.

    Google Scholar 

  26. Semenenko, K.N., Shilkin, S.P., Burnasheva, V.V., Volkova, L.S., and Mozgina, N.G., Reactions of some intermetallic compounds between rare-earth and iron-group metals with nitrogen in the presence of hydrogen, Zh. Obshch. Khim., 1987, vol. 57, no. 4, pp. 729–732.

    CAS  Google Scholar 

  27. Bolgar, A.S., Serbova, M.I., Fesenko, V.V., Serebryakova, T.I., and Isaeva, L.P., High-temperature enthalpy and heat capacity of niobium diboride, Teplofiz. Vys. Temp., 1980, vol. 18, no. 6, pp. 1180–1183.

    CAS  Google Scholar 

  28. Burgess, D.R., Jr. Thermochemical data in NIST Chemistry WebBook, NIST Standard Reference Database no. 69, Linstrom P.J. and Mallard W.G., Eds., Gaithersburg: National Inst of Standards and Technology. https://doi.org/10.18434/T4D303

  29. Dymova, T.N., Eliseeva, N.G., and Mikheeva, V.I., Thermoanalytical study of sodium borohydride and related substances, Zh. Neorg. Khim., 1967, vol. 12, no. 9, pp. 2317–2320.

    CAS  Google Scholar 

  30. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Analytical Facilities Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences, and at the Shared Research Facilities Center, Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research targets for the Institute of Problems of Chemical Physics, Russian Academy of Sciences (state registration no. AAAA-A19-119061890019-5) and the Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (theme no. FFSZ-2022-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shilkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurov, A.A., Kovalev, D.Y., Nigmatullina, G.R. et al. Reaction of Niobium Pentachloride with Sodium Borohydride in Ionic Melts. Inorg Mater 58, 838–844 (2022). https://doi.org/10.1134/S0020168522080143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522080143

Keywords:

Navigation