Skip to main content
Log in

Trends in the Development of Room-Temperature Sodium–Sulfur Batteries

  • Published:
Inorganic Materials Aims and scope

Abstract—

This review examines research reported in the past decade in the field of the fabrication of batteries based on the sodium–sulfur system, capable of operating at an ambient temperature (room-temperature sodium–sulfur (Na–S) batteries). Such batteries differ from currently widespread lithium-ion or lithium–sulfur analogs in that their starting materials are cheaper and more readily available. One of the key problems to be resolved on the way to room-temperature Na–S batteries with high energy density and long-term cycling stability is transport of cell reaction products (sodium polysulfides) to the opposite electrode, which leads to an appreciable battery self-discharge and loss of the active material as a result of redox reactions that are not accompanied by energy generation. This review is aimed at examining approaches to improving the electrochemical performance of the room-temperature Na–S batteries. Particular attention is paid to potential applications of cation-exchange materials capable of suppressing polysulfide anion transport, with a high sodium cation transport rate retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kulova, T.L. and Skundin, A.M., From lithium-ion to sodium-ion battery, Russ. Chem. Bull., 2017, vol. 66, no. 8, pp. 1329–1335.https://doi.org/10.1007/s11172-017-1896-3

    Article  CAS  Google Scholar 

  2. Manthiram, A. and Yu, X.W., Ambient temperature sodium–sulfur batteries, Small, 2015, vol. 11, no. 18, pp. 2108–2114.https://doi.org/10.1002/smll.201403257

    Article  CAS  PubMed  Google Scholar 

  3. Morachevskiy, A.G., Popovich, A.A., and Demidov, A.I., New trends of sodium-sulfur batteries development, Peter Great St. Petersburg Polytech. Univ. J. Eng. Sci. Technol., 2017, vol. 23, no. 4, pp. 110–117.https://doi.org/10.18721/JEST.230410

    Article  Google Scholar 

  4. Wang, Y.-X., Zhang, B., Lai, W., Xu, Y., Chou, S.-L., Liu, H.-K., and Dou, S.-X., Room-temperature sodium–sulfur batteries: a comprehensive review on research progress and cell chemistry, Adv. Energy Mater., 2017, vol. 7, no. 24, paper 1602829.https://doi.org/10.1002/aenm.201602829

  5. Zhou, D., Chen, Y., Li, B., Fan, H., Cheng, F., Shanmukaraj, D., Rojo, T., Armand, M., and Wang, G., A stable quasi-solid-state sodium–sulfur battery, Angew. Chem., Int. Ed. Engl., 2018, vol. 57, no. 32, pp. 10168–10172.https://doi.org/10.1002/anie.201805008

    Article  CAS  Google Scholar 

  6. Li, T.X., Xu, J., Wang, C.Y., Wu, W.J., Su, D.W., and Wang, G.X., The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium–sulfur battery, J. Alloys Compd., 2019, vol. 792, pp. 797–817.https://doi.org/10.1016/j.jallcom.2019.03.343

    Article  CAS  Google Scholar 

  7. Syali, M.S., Kumar, D., Mishra, K., and Kanchan, D.K., Recent advances in electrolytes for room-temperature sodium–sulfur batteries: a review, Energy Storage Mater., 2020, vol. 31, pp. 352–372.https://doi.org/10.1016/j.ensm.2020.06.023

    Article  Google Scholar 

  8. Yu, X.W. and Manthiram, A., A progress report on metal–sulfur batteries, Adv. Funct. Mater., 2020, vol. 30, no. 39, paper 2004084.https://doi.org/10.1002/adfm.202004084

  9. Wang, Y.J., Zhang, Y.J., Cheng, H.Y., Ni, Z.C., Wang, Y., Xia, G.H., Li, X., and Zeng, X.Y., Research progress toward room temperature sodium sulfur batteries: a review, Molecules, 2021, vol. 26, no. 6, paper 1535.https://doi.org/10.3390/molecules26061535

  10. Branco, H., Castro, R., and Setas Lopes, A., Battery energy storage systems as a way to integrate renewable energy in small isolated power systems, Energy Sustain. Dev., 2018, vol. 43, pp. 90–99.https://doi.org/10.1016/j.esd.2018.01.003

    Article  Google Scholar 

  11. Hu, H., Xie, N., Fang, D., and Zhang, X., The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: evidence from 25 developing countries, Appl. Energy, 2018, vol. 211, pp. 12229–1244.https://doi.org/10.1016/j.apenergy.2017.12.019

    Article  Google Scholar 

  12. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries (a review), Russ. J. Electrochem., 2018, vol. 54, no. 2, pp. 113–152.https://doi.org/10.1134/s1023193518020076

    Article  CAS  Google Scholar 

  13. Tang, W.W., Aslam, M.K., and Xu, M.W., Towards high performance room temperature sodium–sulfur batteries: strategies to avoid shuttle effect, J. Colloid Interface Sci., 2022, vol. 606, pp. 22–37.https://doi.org/10.1016/j.jcis.2021.07.114

    Article  CAS  PubMed  Google Scholar 

  14. https://periodictable.com/Properties/A/CrustAbundance.an.html.

  15. Yu, X. and Manthiram, A., Capacity enhancement and discharge mechanisms of room-temperature sodium–sulfur batteries, ChemElectroChem, 2014, vol. 1, no. 8, pp. 1275–1280.https://doi.org/10.1002/celc.201402112

    Article  CAS  Google Scholar 

  16. Chung, S.H. and Manthiram, A., Current status and future prospects of metal–sulfur batteries, Adv. Mater., 2019, vol. 31, no. 27, paper 1901125.https://doi.org/10.1002/adma.201901125

  17. Park, C.-W., Ryu, H.-S., Kim, K.-W., Ahn, J.-H., Lee, J.-Y., and Ahn, H.-J., Discharge properties of all-solid sodium–sulfur battery using poly(ethylene oxide) electrolyte, J. Power Sources, 2007, vol. 165, no. 1, pp. 450–454.https://doi.org/10.1016/j.jpowsour.2006.11.083

    Article  CAS  Google Scholar 

  18. Zhou, D., Tang, X., Guo, X., Li, P., Shanmukaraj, D., Liu, H., Gao, X., Wang, Y., Rojo, T., Armand, M., and Wang, G., Polyolefin-based Janus separator for rechargeable sodium batteries, Angew. Chem., Int. Ed. Engl., 2020, vol. 59, no. 38, pp. 16725–16734.https://doi.org/10.1002/anie.202007008

    Article  CAS  Google Scholar 

  19. Kim, I., Kim, C., Kim, H., Kim, K.W., Ahn, J.H., and Ahn, H.J., Initial discharge behavior of an ultra high loading 3D sulfur cathode for a room-temperature Na/S battery, J. Nanosci. Nanotechnol., 2018, vol. 18, no. 9, pp. 6524–6527.https://doi.org/10.1166/jnn.2018.15678

    Article  CAS  PubMed  Google Scholar 

  20. Yu, X.W. and Manthiram, A., Capacity enhancement and discharge mechanisms of room-temperature sodium–sulfur batteries, ChemElectroChem, 2014, vol. 1, no. 8, pp. 1275–1280.https://doi.org/10.1002/celc.201402112

    Article  CAS  Google Scholar 

  21. Kim, I., Park, J.Y., Kim, C., Park, J.W., Ahn, J.P., Ahn, J.H., Kim, K.W., and Ahn, H.J., Sodium polysulfides during charge/discharge of the room-temperature Na/S battery using TEGDME electrolyte, J. Electrochem. Soc., 2016, vol. 163, no. 5, pp. A611–A616.https://doi.org/10.1149/2.0201605jes

    Article  CAS  Google Scholar 

  22. Kim, I., Park, J.-Y., Kim, C.H., Park, J.-W., Ahn, J.-P., Ahn, J.-H., Kim, K.-W., and Ahn, H.-J., A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode, J. Power Sources, 2016, vol. 301, pp. 332–337.https://doi.org/10.1016/j.jpowsour.2015.09.120

    Article  CAS  Google Scholar 

  23. Paris, J. and Plichon, V., Electrochemical reduction of sulfur in dimethylacetamide, Electrochim. Acta, 1981, vol. 26, no. 12, pp. 1823–1829.https://doi.org/10.1016/0013-4686(81)85170-5

    Article  CAS  Google Scholar 

  24. Kim, B.S. and Park, S.M., In situ spectroelectrochemical studies on the reduction of sulfur in dimethyl sulfoxide solutions, J. Electrochem. Soc., 1993, vol. 140, no. 1, pp. 115–122.https://doi.org/10.1149/1.2056070

    Article  CAS  Google Scholar 

  25. Gaillard, F., Levillain, E., and Lelieur, J.P., Polysulfides in dimethylformamide: only the radical anions \({\text{S}}_{3}^{ - }\) and \({\text{S}}_{4}^{ - }\) are reducible, J. Electroanal. Chem., 1997, vol. 432, nos. 1–2, pp. 129–138.https://doi.org/10.1016/s0022-0728(97)00192-710.1016/s0022-0728(97)00192-7

    Article  CAS  Google Scholar 

  26. Gaillard, F. and Levillain, E., Visible time-resolved spectroelectrochemistry – application to study of the reduction of sulfur (S8) in dimethylformamide, J. Electroanal. Chem., 1995, vol. 398, nos. 1–2, pp. 77–87.https://doi.org/10.1016/0022-0728(95)04144-1

    Article  Google Scholar 

  27. Ryu, H., Kim, T., Kim, K., Ahn, J.H., Nam, T., Wang, G., and Ahn, H.J., Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte, J. Power Sources, 2011, vol. 196, no. 11, pp. 5186–5190.https://doi.org/10.1016/j.jpowsour.2011.01.109

    Article  CAS  Google Scholar 

  28. Qiang, Z., Chen, Y.M., Xia, Y.F., Liang, W.F., Zhu, Y., and Vogt, B.D., Ultra-long cycle life, low-cost room temperature sodium–sulfur batteries enabled by highly doped (N,S) nanoporous carbons, Nano Energy, 2017, vol. 32, pp. 59–66.https://doi.org/10.1016/j.nanoen.2016.12.018

    Article  CAS  Google Scholar 

  29. Wang, Y.X., Yang, J.P., Lai, W.H., Chou, S.L., Gu, Q.F., Liu, H.K., Zhao, D.Y., and Dou, S.X., Achieving high-performance room-temperature sodium sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres, J. Am. Chem. Soc., 2016, vol. 138, no. 51, pp. 16576–16579.https://doi.org/10.1021/jacs.6b08685

    Article  CAS  PubMed  Google Scholar 

  30. Adelhelm, P., Hartmann, P., Bender, C.L., Busche, M., Eufinger, C., and Janek, J., From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries, Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1016–1055.https://doi.org/10.3762/bjnano.6.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo, Q.B., Li, S., Liu, X.J., Lu, H.C., Chang, X.Q., Zhang, H.S., Zhu, X.H., Xia, Q.Y., Yan, C.L., and Xia, H., Ultrastable sodium–sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier, Adv. Sci., 2020, vol. 7, no. 11, paper 1903246.https://doi.org/10.1002/advs.201903246

  32. Kumar, D., Kanchan, D.K., Kumar, S., and Mishra, K., Recent trends on tailoring cathodes for room-temperature Na–S batteries, Mater. Sci. Technol., 2019, vol. 2, no. 1, pp. 117–129.https://doi.org/10.1016/j.mset.2018.11.007

    Article  Google Scholar 

  33. Yaroslavtsev, A.B. and Stenina, I.A., Carbon coating of electrode materials for lithium-ion batteries, Surf. Innov., 2021, vol. 9, nos. 2–3, pp. 92–110.https://doi.org/10.1680/jsuin.20.00044

    Article  Google Scholar 

  34. Wenzel, S., Metelmann, H., Raiß, c., Dürr, A.K., Janek, J., and Adelhelm, P., Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte, J. Power Sources, 2013, vol. 243, 758–765.https://doi.org/10.1016/j.jpowsour.2013.05.194

    Article  CAS  Google Scholar 

  35. Kim, J.S., Ahn, H.J., Kim, I.P., Kim, K.W., Ahn, J.H., Park, C.W., and Ryu, H.S., The short-term cycling properties of Na/PVDF/S battery at ambient temperature, J. Solid State Electrochem., 2008, vol. 12, nos. 7–8, pp. 861–865.https://doi.org/10.1007/s10008-008-0504-8

    Article  CAS  Google Scholar 

  36. Liu, D.Z., Li, Z., Li, X., Cheng, Z.X., Yuan, L.X., and Huang, Y.H., Recent advances in cathode materials for room-temperature sodium–sulfur batteries, ChemPhysChem, 2019, vol. 20, no. 23, pp. 3164–3176.https://doi.org/10.1002/cphc.201900595

    Article  CAS  PubMed  Google Scholar 

  37. Carter, R., Oakes, L., Douglas, A., Muralidharan, N., Cohn, A.P., and Pint, C.L., A sugar-derived room-temperature sodium sulfur battery with long term cycling stability, Nano Lett., 2017, vol. 17, no. 3, pp. 1863–1869.https://doi.org/10.1021/acs.nanolett.6b05172

    Article  CAS  PubMed  Google Scholar 

  38. Hu, L., Lu, Y., Zhang, T.W., Huang, T., Zhu, Y.C., and Qian, Y.T., Ultramicroporous carbon through an activation-free approach for Li–S and Na–S batteries in carbonate-based electrolyte, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 16, pp. 13813–13818.https://doi.org/10.1021/acsami.7b01387

    Article  CAS  PubMed  Google Scholar 

  39. Wei, S., Xu, S., Agrawral, A., Choudhury, S., Lu, Y., Tu, Z., Ma, L., and Archer, L.A., A stable room-temperature sodium–sulfur battery, Nat. Commun., 2016, vol. 7, paper 11722.https://doi.org/10.1038/ncomms11722

  40. Du, W.Y., Wu, Y.K., Yang, T.T., Guo, B.S., Liu, D.Y., Bao, S.J., and Xu, M.W., Rational construction of rGA/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na–S batteries, Chem. Eng. J., 2020, vol. 379, paper 122359.https://doi.org/10.1016/j.cej.2019.122359

  41. Xin, S., Gu, L., Zhao, N.H., Yin, Y.X., Zhou, L.J., Guo, Y.G., and Wan, L.J., Smaller sulfur molecules promise better lithium–sulfur batteries, J. Am. Chem. Soc., 2012, vol. 134, no. 45, pp. 18510–18513.https://doi.org/10.1021/ja308170k

    Article  CAS  PubMed  Google Scholar 

  42. Guo, Q.B., Sun, S., Kim, K.I., Zhang, H.S., Liu, X.J., Yan, C.L., and Xia, H., A novel one-step reaction sodium–sulfur battery with high areal sulfur loading on hierarchical porous carbon fiber, Carbon Energy, 2021, vol. 3, no. 3, pp. 440–448.https://doi.org/10.1002/cey2.86

    Article  CAS  Google Scholar 

  43. Oakes, L., Carter, R., and Pint, C.L., Nanoscale defect engineering of lithium–sulfur battery composite cathodes for improved performance, Nanoscale, 2016, vol. 8, no. 46, pp. 19368–19375.https://doi.org/10.1039/c6nr06332b

    Article  CAS  PubMed  Google Scholar 

  44. Xiao, F.P., Yang, X.M., Wang, H.K., Xu, J., Liu, Y.L., Yu, D.Y.W., and Rogach, A.L., Covalent encapsulation of sulfur in a MOF-derived S, N-doped porous carbon host realized via the vapor-infiltration method results in enhanced sodium–sulfur battery performance, Adv. Energy Mater., 2020, vol. 10, no. 23, paper 2000931.https://doi.org/10.1002/aenm.202000931

  45. Xin, S., Yin, Y.X., Guo, Y.G., and Wan, L.J., A high-energy room-temperature sodium–sulfur battery, Adv. Mater., 2014, vol. 26, no. 8, pp. 1261–1265.https://doi.org/10.1002/adma.201304126

    Article  CAS  PubMed  Google Scholar 

  46. Wei, S.Y., Xu, S.M., Agrawral, A., Choudhury, S., Lu, Y.Y., Tu, Z.Y., Ma, L., and Archer, L.A., A stable room-temperature sodium–sulfur battery, Nat. Commun., 2016, vol. 7, paper 11722.https://doi.org/10.1038/ncomms11722

  47. Wu, H.B., Wei, S.Y., Zhang, L., Xu, R., Hng, H.H., and Lou, X.W., Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium–sulfur batteries, Chem. – Eur. J., 2013, vol. 19, no. 33, pp. 10804–10808.https://doi.org/10.1002/chem.201301689

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Y.M., Liang, W.F., Li, S., Zou, F., Bhaway, S.M., Qiang, Z., Gao, M., Vogt, B.D., and Zhu, Y., A nitrogen doped carbonized metal-organic framework for high stability room temperature sodium–sulfur batteries, J. Mater. Chem. A, 2016, vol. 4, no. 32, pp. 12471–12478.https://doi.org/10.1039/c6ta04529d

    Article  CAS  Google Scholar 

  49. Mou, J.R., Liu, T., Li, Y.J., Zhang, W.J., Li, M., Xu, Y.T., Huang, J.L., and Liu, M.L., Hierarchical porous carbon sheets for high-performance room temperature sodium–sulfur batteries: integration of nitrogen-self-doping and space confinement, J. Mater. Chem. A, 2020, vol. 8, no. 46, pp. 24590–24597.https://doi.org/10.1039/d0ta08876e

    Article  CAS  Google Scholar 

  50. Zhang, B.W., Liu, Y.D., Wang, Y.X., Zhang, L., Chen, M.Z., Lai, W.H., Chou, S.L., Liu, H.K., and Dou, S.X., In situ grown S nanosheets on Cu foam: an ultrahigh electroactive cathode for room-temperature Na–S batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 29, pp. 24446–24450.https://doi.org/10.1021/acsami.7b07615

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, B.W., Sheng, T., Wang, Y.X., Chou, S.L., Davey, K., Dou, S.X., and Qiao, S.Z., Long-life room-temperature sodium–sulfur batteries by virtue of transition-metal-nanocluster–sulfur interactions, Angew. Chem., Int. Ed. Engl., 2019, vol. 58, no. 5, pp. 1484–1488.https://doi.org/10.1002/anie.201811080

    Article  CAS  Google Scholar 

  52. Ghosh, A., Kumar, A., Dos, T., Chakrabory, S., Kar, M., Macfarlane, D.R., and Mitra, S., Lewis acid–base interactions between polysulfides and boehmite enables stable room-temperature sodium–sulfur batteries, Adv. Funct. Mater., 2020, vol. 30, no. 50, paper 2005669.https://doi.org/10.1002/adfm.202005669

  53. Mou, J.R., Li, Y.J., Liu, T., Zhang, W.J., Li, M., Xu, Y.T., Zhong, L., Pan, W.H., Yang, C.H., Huang, J.L., and Liu, M.L., Metal-organic frameworks-derived nitrogen-doped porous carbon nanocubes with embedded co nanoparticles as efficient sulfur immobilizers for room temperature sodium–sulfur batteries, Small Methods, 2021, vol. 5, no. 8, paper 2100455.https://doi.org/10.1002/smtd.202100455

  54. Yang, H.L., Zhou, S., Zhang, B.W., Chu, S.Q., Guo, H.P., Gu, Q.F., Liu, H.W., Lei, Y.J., Konstantinov, K., Wang, Y.X., Chou, S.L., Liu, H.K., and Dou, S.X., Architecting freestanding sulfur cathodes for superior room-temperature Na–S batteries, Adv. Funct. Mater., 2021, vol. 31, no. 32, paper 2102280.https://doi.org/10.1002/adfm.202102280

  55. Zhou, J.H., Xu, S.M., and Yang, Y., Strategies for polysulfide immobilization in sulfur cathodes for room-temperature sodium–sulfur batteries, Small, 2021, vol. 17, no. 32, paper 2100057.https://doi.org/10.1002/smll.202100057

  56. Ghosh, A., Shukla, S., Monisha, M., Kumar, A., Lochab, B., and Mitra, S., Sulfur copolymer: a new cathode structure for room-temperature sodium–sulfur batteries, ACS Energy Lett., 2017, vol. 2, no. 10, pp. 2478–2485.https://doi.org/10.1021/acsenergylett.7b00714

    Article  CAS  Google Scholar 

  57. Fan, L., Ma, R.F., Yang, Y.H., Chen, S.H., and Lu, B.A., Covalent sulfur for advanced room temperature sodium–sulfur batteries, Nano Energy, 2016, vol. 28, pp. 304–310.https://doi.org/10.1016/j.nanoen.2016.08.056

    Article  CAS  Google Scholar 

  58. Wang, J.L., Yang, J., Nuli, Y., and Holze, R., Room temperature Na/S batteries with sulfur composite cathode materials, Electrochem. Commun., 2007, vol. 9, no. 1, pp. 31–34.https://doi.org/10.1016/j.elecom.2006.08.029

    Article  CAS  Google Scholar 

  59. Hwang, T.H., Jung, D.S., Kim, J.S., Kim, B.G., and Choi, J.W., One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature, Nano Lett., 2013, vol. 13, no. 9, pp. 4532–4538.https://doi.org/10.1021/nl402513x

    Article  CAS  PubMed  Google Scholar 

  60. Kim, I., Kim, C.H., Choi, S.H., Ahn, J.P., Ahn, J.H., Kim, K.W., Cairns, E.J., and Ahn, H.J., A singular flexible cathode for room temperature sodium/sulfur battery, J. Power Sources, 2016, vol. 307, pp. 31–37.https://doi.org/10.1016/j.jpowsour.2015.12.035

    Article  CAS  Google Scholar 

  61. Zhu, T.C., Dong, X.L., Liu, Y., Wang, Y.G., Wang, C.X., and Xia, Y.Y., An all-solid-state sodium–sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode, ACS Appl. Energy Mater., 2019, vol. 2, no. 7, pp. 5263–5271.https://doi.org/10.1021/acsaem.9b00953

    Article  CAS  Google Scholar 

  62. Seong, M., Kim, H., Kim, C., Lim, H.S., Yoon, D.K., Kim, T.H., and Ahn, H.J., Fabrication and electrochemical characterization of sulfurized-polyacrylonitrile nanofiber electrodes for Na/S batteries using various polyacrylonitrile solutions, J. Nanosci. Nanotechnol., 2020, vol. 20, no. 11, pp. 7092–7095.https://doi.org/10.1166/jnn.2020.18828

    Article  CAS  PubMed  Google Scholar 

  63. Murugan, S., Niesen, S., Kappler, J., Kuster, K., Starke, U., and Buchmeiser, M.R., Ultra-stable cycling of high capacity room temperature sodium–sulfur batteries based on sulfurated poly(acrylonitrile), Batteries Supercaps, 2021, vol. 4, no. 10, pp. 1636–1646.https://doi.org/10.1002/batt.202100125

    Article  CAS  Google Scholar 

  64. Kim, H., Sadan, M.K., Kim, C., Jo, J., Seong, M., Cho, K.-K., Kim, K.-W., Ahn, J.-H., and Ahn, H.-J., Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S batteries by electrochemical activation, Chem. Eng. J., 2021, vol. 426, paper 130787.https://doi.org/10.1016/j.cej.2021.130787

  65. Zhang, L.L., Zhang, W.H., Zhu, Z.Y., Huang, Q.Q., Liu, X.X., Zhang, M.C., Pei, W.B., and Wu, J.S., Multi-channel sulfurized polyacrylonitrile with hollow structure as cathode for room temperature sodium–sulfur batteries, J. Solid State Chem., 2021, vol. 301, paper 122359.https://doi.org/10.1016/j.jssc.2021.122359

  66. Yu, X. and Manthiram, A., Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes, J. Phys. Chem. C, 2014, vol. 118, no. 40, pp. 22952–22959.https://doi.org/10.1021/jp507655u

    Article  CAS  Google Scholar 

  67. Ceylan Cengiz, E., Erdol, Z., Sakar, B., Aslan, A., Ata, A., Ozturk, O., and Demir-Cakan, R., Investigation of the effect of using Al2O3–Nafion barrier on room-temperature Na–S batteries, J. Phys. Chem. C, 2017, vol. 121, no. 28, pp. 15120–15126.https://doi.org/10.1021/acs.jpcc.7b04711

    Article  CAS  Google Scholar 

  68. Kumar, A., Ghosh, A., Roy, A., Panda, M.R., Forsyth, M., Macfarlane, D.R., and Mitra, S, High-energy density room temperature sodium–sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays, Energy Storage Mater., 2019, vol. 20, pp. 196–202.https://doi.org/10.1016/j.ensm.2018.11.031

    Article  Google Scholar 

  69. Yu, X.W. and Manthiram, A., Na2S–carbon nanotube fabric electrodes for room-temperature sodium–sulfur batteries, Chem. – Eur. J., 2015, vol. 21, no. 11, pp. 4233–4237.https://doi.org/10.1002/chem.201405344

    Article  CAS  PubMed  Google Scholar 

  70. Wang, C.L., Wang, H., Hu, X.F., Matios, E., Luo, J.M., Zhang, Y.W., Lu, X., and Li, W.Y., Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium–sulfur batteries, Adv. Energy Mater., 2019, vol. 9, no. 5, paper 1803251.https://doi.org/10.1002/aenm.201803251

  71. Lee, J., Kim, J., Kim, S., and Jo, C., A review on recent approaches for designing the SEI layer on sodium metal anodes, Mater. Adv., 2020, vol. 1, no. 9, pp. 3143–3166.https://doi.org/10.1039/d0ma00695e

    Article  CAS  Google Scholar 

  72. Eng, A.Y.S., Kumar, V., Zhang, Y.W., Luo, J.M., Wang, W.Y., Sun, Y.M., Li, W.Y., and Seh, Z.W., Room-temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering, Adv. Energy Mater., 2021, vol. 11, no. 14, paper 2003493.https://doi.org/10.1002/aenm.202003493

  73. Seh, Z.W., Sun, J., Sun, Y., and Cui, Y., A highly reversible room-temperature sodium metal anode, ACS Cent. Sci., 2015, vol. 1, no. 8, pp. 449–455.https://doi.org/10.1021/acscentsci.5b00328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wei, S., Choudhury, S., Xu, J., Nath, P., Tu, Z., and Archer, L.A., Highly stable sodium batteries enabled by functional ionic polymer membranes, Adv. Mater., 2017, vol. 29, no. 12, paper 1605512.https://doi.org/10.1002/adma.201605512

  75. Zhao, X., Zhu, Q., Xu, S., Chen, L., Zuo, Z., Wang, X.-M., Liu, S., and Zhang, D., Fluoroethylene carbonate as an additive in a carbonates-based electrolyte for enhancing the specific capacity of room-temperature sodium–sulfur cell, J. Electroanal. Chem., 2019, vol. 832, pp. 392–398.https://doi.org/10.1016/j.jelechem.2018.11.021

    Article  CAS  Google Scholar 

  76. Zhang, B.W., Liu, Y.D., Wang, Y.X., Zhang, L., Chen, M.Z., Lai, W.H., Chou, S.L., Liu, H.K., and Dou, S.X., In situ grown S nanosheets on Cu foam: an ultrahigh electroactive cathode for room-temperature Na–S batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 29, pp. 24446–24450.https://doi.org/10.1021/acsami.7b07615

    Article  CAS  PubMed  Google Scholar 

  77. Komaba, S., Ishikawa, T., Yabuuchi, N., Murata, W., Ito, A., and Ohsawa, Y., Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries, ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 11, pp. 4165–4168.https://doi.org/10.1021/am200973k

    Article  CAS  PubMed  Google Scholar 

  78. Wu, J., Liu, J., Lu, Z., Lin, K., Lyu, Y.-Q., Li, B., Ciucci, F., and Kim, J.-K., Non-flammable electrolyte for dendrite-free sodium–sulfur battery, Energy Storage Mater., 2019, vol. 23, pp. 8–16.https://doi.org/10.1016/j.ensm.2019.05.045

    Article  Google Scholar 

  79. Xu, X.F., Zhou, D., Qin, X.Y., Lin, K., Kang, F.Y., Li, B.H., Shanmukaraj, D., Rojo, T., Armand, M., and Wang, G.X., A room-temperature sodium–sulfur battery with high capacity and stable cycling performance, Nat. Commun., 2018, vol. 9, paper 3870.https://doi.org/10.1038/s41467-018-06443-3

  80. Zhao, Y., Goncharova, L.V., Lushington, A., Sun, Q., Yadegari, H., Wang, B.Q., Xiao, W., Li, R.Y., and Sun, X.L., Superior stable and long life sodium metal anodes achieved by atomic layer deposition, Adv. Mater., 2017, vol. 29, no. 18, paper 1606663.https://doi.org/10.1002/adma.201606663

  81. Wei, S.Y., Choudhury, S., Xu, J., Nath, P., Tu, Z.Y., and Archer, L.A., Highly stable sodium batteries enabled by functional ionic polymer membranes, Adv. Mater., 2017, vol. 29, no. 12, paper 1605512.https://doi.org/10.1002/adma.201605512

  82. Zhang, J., Zhang, G.X., Chen, Z.S., Dai, H.L., Hu, Q.M., Liao, S.J., and Sun, S.H., Emerging applications of atomic layer deposition for lithium–sulfur and sodium–sulfur batteries, Energy Storage Mater., 2020, vol. 26, pp. 513–533.https://doi.org/10.1016/j.ensm.2019.11.025

    Article  Google Scholar 

  83. Zhao, Y., Zhang, L., Liu, J., Adair, K., Zhao, F.P., Sun, Y.P., Wu, T.P., Bi, X.X., Amine, K., Lu, J., and Sun, X.L., Atomic/molecular layer deposition for energy storage and conversion, Chem. Soc. Rev., 2021, vol. 50, no. 6, pp. 3889–3956.https://doi.org/10.1039/d0cs00156b

    Article  CAS  PubMed  Google Scholar 

  84. Wang, L., Wang, T., Peng, L., Wang, Y., Zhang, M., Zhou, J., Chen, M., Cao, J., Fei, H., Duan, X., Zhu, J., and Duan, X., The promises, challenges and pathways to room-temperature sodium–sulfur batteries, Natl. Sci. Rev., 2021.https://doi.org/10.1093/nsr/nwab050

  85. Zhao, Y., Goncharova, L.V., Zhang, Q., Kaghazchi, P., Sun, Q., Lushington, A., Wang, B.Q., Li, R.Y., and Sun, X.L., Inorganic–organic coating via molecular layer deposition enables long life sodium metal anode, Nano Lett., 2017, vol. 17, no. 9, pp. 5653–5659.https://doi.org/10.1021/acs.nanolett.7b02464

    Article  CAS  PubMed  Google Scholar 

  86. Kim, Y.J., Lee, H., Noh, H., Lee, J., Kim, S., Ryou, M.H., Lee, Y.M., and Kim, H.T., Enhancing the cycling stability of sodium metal electrodes by building an inorganic–organic composite protective layer, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 7, pp. 6000–6006.https://doi.org/10.1021/acsami.6b14437

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, D., Li, B., Wang, S., and Yang, S.B., Simultaneous formation of artificial SEI film and 3D host for stable metallic sodium anodes, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 46, pp. 40265–40272.https://doi.org/10.1021/acsami.7b12568

    Article  CAS  PubMed  Google Scholar 

  88. Wang, H., Wang, C.L., Matios, E., and Li, W.Y., Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes, Nano Lett., 2017, vol. 17, no. 11, pp. 6808–6815.

    Article  CAS  Google Scholar 

  89. Luo, W., Lin, C.F., Zhao, O., Noked, M., Zhang, Y., Rubloff, G.W., and Hu, L.B., Ultrathin surface coating enables the stable sodium metal anode, Adv. Energy Mater., 2017, vol. 7, no. 2, paper 1601526.https://doi.org/10.1021/acs.nanolett.7b03071

  90. Xu, Z.X., Yang, J., Zhang, T., Sun, L.M., Nuli, Y., Wang, J.L., and Hirano, S., Stable Na metal anode enabled by a reinforced multistructural SEI layer, Adv. Funct. Mater., 2019, vol. 29, no. 27, paper 1901924.https://doi.org/10.1002/adfm.201901924

  91. Lee, D.-J., Park, J.-W., Hasa, I., Sun, Y.-K., Scrosati, B., and Hassoun, J., Alternative materials for sodium ion–sulphur batteries, J. Mater. Chem. A, 2013, vol. 1, no. 17, pp. 5256–5261.https://doi.org/10.1039/c3ta10241f

    Article  CAS  Google Scholar 

  92. Yue, J., Han, F.D., Fan, X.L., Zhu, X.Y., Ma, Z.H., Yang, J., and Wang, C.S., High-performance all-inorganic solid-state sodium–sulfur battery, ACS Nano, 2017, vol. 11, no. 5, pp. 4885–4891.https://doi.org/10.1021/acsnano.7b01445

    Article  CAS  PubMed  Google Scholar 

  93. Wang, A.X., Hu, X.F., Tang, H.Q., Zhang, C.Y., Liu, S., Yang, Y.W., Yang, Q.H., and Luo, J.Y., Processable and moldable sodium-metal anodes, Angew. Chem., Int. Ed., 2017, vol. 56, no. 39, pp. 11921–11926.https://doi.org/10.1002/anie.201703937

    Article  CAS  Google Scholar 

  94. Fang, Y.J., Luan, D.Y., Chen, Y., Gao, S.Y., and Lou, X.W., Rationally designed three-layered Cu2S@carbon@MoS2 hierarchical nanoboxes for efficient sodium storage, Angew. Chem., Int. Ed., 2020, vol. 59, no. 18, pp. 7178–7183.https://doi.org/10.1002/anie.201915917

    Article  CAS  Google Scholar 

  95. Voropaeva, D.Yu., Novikova, S.A., and Yaroslavtsev, A.B., Polymer electrolytes for metal-ion batteries, Russ. Chem. Rev., 2020, vol. 89, no. 10, pp. 1132–1155.https://doi.org/10.1070/rcr4956

    Article  CAS  Google Scholar 

  96. Gao, J., Lowe, M.A., Kiya, Y., and Abruña, H.D., Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies, J. Phys. Chem. C, 2011, vol. 115, no. 50, pp. 25132–25137.https://doi.org/10.1021/jp207714c

    Article  CAS  Google Scholar 

  97. Yu, X. and Manthiram, A., Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional Nafion separator and a Na2S/activated carbon nanofiber cathode, Chem. Mater., 2016, vol. 28, no. 3, pp. 896–905.https://doi.org/10.1021/acs.chemmater.5b04588

    Article  CAS  Google Scholar 

  98. Kolositsyn, B.C., Karaseva, E.V., Syng, D.Yu., and Cho, M.D., Cycling a sulfur electrode in mixed electrolytes based on sulfolane: Effect of ethers, Russ. J. Electrochem., 2002, vol. 38, no. 12, pp. 1452–1456.https://doi.org/10.1023/a:1021668721859

    Article  Google Scholar 

  99. Yu, X. and Manthiram, A., A progress report on metal–sulfur batteries, Adv. Funct. Mater., 2020, vol. 30, no. 39, paper 2004084.https://doi.org/10.1002/adfm.202004084

  100. Yim, T., Park, M.-S., Yu, J.-S., Kim, K.J., Im, K.Y., Kim, J.-H., Jeong, G., Jo, Y.-N., Woo, S.-G., Kang, K.-S., Lee, I., and Kim, Y.-J., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries, Electrochim. Acta, 2013, vol. 107, pp. 454–460.https://doi.org/10.1016/j.electacta.2013.06.039

    Article  CAS  Google Scholar 

  101. Hayashi, A., Noi, K., Sakuda, A., and Tatsumisago, M., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun., 2012, vol. 3, paper 856.https://doi.org/10.1038/ncomms1843

  102. Nagata, H. and Chikusa, Y., An all-solid-state sodium–sulfur battery operating at room temperature using a high-sulfur-content positive composite electrode, Chem. Lett., 2014, vol. 43, no. 8, pp. 1333–1334.https://doi.org/10.1246/cl.140353

    Article  CAS  Google Scholar 

  103. Tanibata, N., Deguchi, M., Hayashi, A., and Tatsumisago, M., All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature, Chem. Mater., 2017, vol. 29, no. 12, pp. 5232–5238.https://doi.org/10.1021/acs.chemmater.7b01116

    Article  CAS  Google Scholar 

  104. An, T., Jia, H.H., Peng, L.F., and Xie, J., Material and interfacial modification toward a stable room-temperature solid-state Na–S battery, ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 18, pp. 20563–20569.https://doi.org/10.1021/acsami.0c03899

    Article  CAS  PubMed  Google Scholar 

  105. Song, S.F., Duong, H.M., Korsunsky, A.M., Hu, N., and Lu, L., A Na+ superionic conductor for room-temperature sodium batteries, Sci. Rep., 2016, vol. 6, paper 32330.https://doi.org/10.1038/srep32330

  106. Oh, J.A.S., He, L.C., Plewa, A., Morita, M., Zhao, Y., Sakamoto, T., Song, X., Zhai, W., Zeng, K.Y., and Lu, L., Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering, ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 43, pp. 40125–40133.https://doi.org/10.1021/acsami.9b14986

    Article  CAS  PubMed  Google Scholar 

  107. Yu, X.W. and Manthiram, A., Sodium–sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte, Matter, 2019, vol. 1, no. 2, pp. 439–451.https://doi.org/10.1016/j.matt.2019.03.008

    Article  Google Scholar 

  108. Armand, M.B., Polymer electrolytes, Ann. Rev. Mater. Sci., 1986, vol. 16, no. 1, pp. 245–261.https://doi.org/10.1146/annurev.ms.16.080186.001333

    Article  CAS  Google Scholar 

  109. Yaroslavtseva, T.V., Reznitskikh, O.G., Sherstobitova, E.A., Erkabaev, A.M., Brezhestovsky, M.S., and Bushkova, O.V., Solid polymer electrolytes in a poly(butadiene-acrylonitrile)–LiBr system, Ionics, 2017, vol. 23, no. 12, pp. 3347–3363.https://doi.org/10.1007/s11581-017-2149-z

    Article  CAS  Google Scholar 

  110. Zhang, Q.Q., Liu, K., Ding, F., and Liu, X.J., Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 2017, vol. 10, no. 12, pp. 4139–4174.https://doi.org/10.1007/s12274-017-1763-4

    Article  Google Scholar 

  111. Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., and Wang, G.X., Polymer electrolytes for lithium-based batteries: advances and prospects, Chem, 2019, vol. 5, no. 9, pp. 2326–2352.https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  112. Bushkova, O.V., Animitsa, I.E., Lirova, B.I., and Zhukovsky, V.M., Lithium conducting solid polymer electrolytes based on polyacrylonitrile copolymers: ion solvation and transport properties, Ionics, 1997, vol. 3, nos. 5–6, pp. 396–404.https://doi.org/10.1007/bf02375716

    Article  CAS  Google Scholar 

  113. Ge, Z., Li, J., and Liu, J., Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO–NaCF3SO3–MIL-53(al) solid electrolyte, Ionics, 2020, vol. 26, no. 4, pp. 1787–1795.https://doi.org/10.1007/s11581-020-03513-9

    Article  CAS  Google Scholar 

  114. Park, C.W., Ahn, J.H., Ryu, H.S., Kim, K.W., and Ahn, H.J., Room-temperature solid-state sodium/sulfur battery, Electrochem. Solid State Lett., 2006, vol. 9, no. 3, pp. A123–A125.https://doi.org/10.1149/1.2164607

    Article  CAS  Google Scholar 

  115. Yarmolenko, O.V., Yudina, A.V., Evshchik, E.Yu., Chernyak, A.V., Marinin, A.A., Volkov, V.I., and Kulova, T.L., New network-gel-electrolytes consisting of polyethylene glycol diacrylate, LiBF4, and 1-butyl-3-methylimidazolium tetrafluoroborate, added with alkylene carbonates: The ion transfer mechanism and properties, Russ. J. Electrochem., 2015, vol. 51, no. 5, pp. 421–428.https://doi.org/10.1134/s1023193515050183

    Article  CAS  Google Scholar 

  116. Mauger, A., Julien, C.M., Paolella, A., Armand, M., and Zaghib, K., Building better batteries in the solid state: a review, Materials, 2019, vol. 12, no. 23, paper 3892.https://doi.org/10.3390/ma12233892

  117. Kumar, D. and Kanchan, D.K., Dielectric and electrochemical studies on carbonate free Na-ion conducting electrolytes for sodium–sulfur batteries, J. Energy Storage, 2019, vol. 22, pp. 44–49.https://doi.org/10.1016/j.est.2019.01.020

    Article  Google Scholar 

  118. Qiao, L.X., Judez, X., Rojo, T., Armand, M., and Zhang, H., Polymer electrolytes for sodium batteries, J. Electrochem. Soc., 2020, vol. 167, no. 7, paper 070534.https://doi.org/10.1149/1945-7111/ab7aa0

  119. Lonchakova, O.V., Semenikhin, O.A., Zakharkin, M.V., Karpushkin, E.A., Sergeyev, V.G., and Antipov, E.V., Efficient gel-polymer electrolyte for sodium-ion batteries based on poly(acrylonitrile-co-methyl acrylate), Electrochim. Acta, 2020, vol. 334, paper 135512.https://doi.org/10.1016/j.electacta.2019.135512

  120. Lim, D.H., Agostini, M., Ahn, J.H., and Matic, A., An electrospun nanofiber membrane as gel-based electrolyte for room-temperature sodium–sulfur batteries, Energy Technol., 2018, vol. 6, no. 7, pp. 1214–1219.https://doi.org/10.1002/ente.201800170

    Article  CAS  Google Scholar 

  121. Kumar, D., Suleman, M., and Hashmi, S.A., Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries, Solid State Ionics, 2011, vol. 202, no. 1, pp. 45–53.https://doi.org/10.1016/j.ssi.2011.09.001

    Article  CAS  Google Scholar 

  122. Singh, R., Maheshwaran, C., Kanchan, D.K., Mishra, K., Singh, P.K., and Kumar, D., Ion-transport behavior in tetraethylene glycol dimethyl ether incorporated sodium ion conducting polymer gel electrolyte membranes intended for sodium battery application, J. Mol. Liq., 2021, vol. 336, paper 116594.https://doi.org/10.1016/j.molliq.2021.116594

  123. Syali, M.S., Mishra, K., Kanchan, D.K., and Kumar, D., Studies on a novel Na+ superionic conducting polymer gel cocktail electrolyte membrane immobilizing molecular liquid mixture of carbonates, tetraglyme and ionic liquid, J. Mol. Liq., 2021, vol. 341, paper 116922.https://doi.org/10.1016/j.molliq.2021.116922

  124. Eshetu, G.G., Armand, M., Scrosati, B., and Passerini, S., Energy storage materials synthesized from ionic liquids, Angew. Chem., Int. Ed., 2014, vol. 53, no. 49, pp. 13342–13359.https://doi.org/10.1002/anie.201405910

    Article  CAS  Google Scholar 

  125. Eshetu, G.G., Elia, G.A., Armand, M., Forsyth, M., Komaba, S., Rojo, T., and Passerini, S., Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives, Adv. Energy Mater., 2020, vol. 10, no. 20, paper 2000093.https://doi.org/10.1002/aenm.202000093

  126. Zhang, H., Li, C.M., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L.M., Armand, M., and Zhou, Z.B., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chem. Soc. Rev., 2017, vol. 46, no. 3, pp. 797–815.https://doi.org/10.1039/c6cs00491a

    Article  CAS  PubMed  Google Scholar 

  127. Di Nato, V., Bettiol, M., Bassetto, F., Boaretto, N., Negro, E., Lavina, S., and Bertasi, F., Hybrid inorganic–organic nanocomposite polymer electrolytes based on Nafion and fluorinated TiO2 for PEMFCs, Int. J. Hydrogen Energy, 2012, vol. 37, no. 7, pp. 6169–6181.https://doi.org/10.1016/j.ijhydene.2011.07.131

    Article  CAS  Google Scholar 

  128. Lemay, N., Mikhaylin, S., Mareev, S., Pismenskaya, N., Nikonenko, V., and Bazinet, L., How demineralization duration by electrodialysis under high frequency pulsed electric field can be the same as in continuous current condition and that for better performances?, J. Membr. Sci., 2020, vol. 603, paper 117878.https://doi.org/10.1016/j.memsci.2020.117878

  129. Filippov, S.P. and Yaroslavtsev, A.B., Hydrogen energy: development prospects and materials, Russ. Chem. Rev., 2021, vol. 90, no. 6, pp. 627–643.https://doi.org/10.1070/rcr5014

    Article  Google Scholar 

  130. Achoh, A.R., Zabolotsky, V.I., Lebedev, K.A., Sharafan, M.V., and Yaroslavtsev, A.B., Electrochemical properties and selectivity of bilayer ion-exchange membranes in ternary solutions of strong electrolytes, Membr. Membr. Technol., 2021, vol. 3, no. 1, pp. 52–71.https://doi.org/10.1134/s2517751621010029

    Article  CAS  Google Scholar 

  131. Sanginov, E.A., Kayumov, R.R., Shmygleva, L.V., Lesnichaya, V.A., Karelin, A.I., and Dobrovolsky, Y.A., Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion, Solid State Ionics, 2017, vol. 300, pp. 26–31.https://doi.org/10.1016/j.ssi.2016.11.017

    Article  CAS  Google Scholar 

  132. Zyubina, T.S., Zyubin, A.S., Dobrovol’skii, Yu.A., and Volokhov, V.M., Nonaqueous LiNafion-based polymeric electrolyte: quantum-chemical modeling, Russ. J. Inorg. Chem., 2017, vol. 62, no. 8, pp. 1051–1057.https://doi.org/10.1134/s0036023617080198

    Article  CAS  Google Scholar 

  133. Pan, Q.Y., Li, Z., Zhang, W.C., Zeng, D.L., Sun, Y.B., and Cheng, H.S., Single ion conducting sodium ion batteries enabled by a sodium ion exchanged poly(bis(4-carbonyl benzene sulfonyl)imide-co-2,5-diamino benzesulfonic acid) polymer electrolyte, Solid State Ionics, 2017, vol. 300, pp. 60–66.https://doi.org/10.1016/j.ssi.2016.12.001

    Article  CAS  Google Scholar 

  134. Voropaeva, D.Y., Novikova, S.A., Kulova, T.L., and Yaroslavtsev, A.B., Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents, Solid State Ionics, 2018, vol. 324, pp. 28–32.https://doi.org/10.1016/j.ssi.2018.06.002

    Article  CAS  Google Scholar 

  135. Voropaeva, D.Y., Novikova, S.A., Kulova, T.L., and Yaroslavtsev, A.B., Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents, Ionics, 2018, vol. 24, no. 6, pp. 1685–1692.https://doi.org/10.1007/s11581-017-2333-1

    Article  CAS  Google Scholar 

  136. Li, Z., Lu, W.H., Zhang, N., Pan, Q.Y., Chen, Y.Z., Xu, G.D., Zeng, D.L., Zhang, Y.F., Cai, W.W., Yang, M., Yang, Z.H., Sun, Y.B., Ke, H.Z., and Cheng, H.S., Single ion conducting lithium sulfur polymer batteries with improved safety and stability, J. Mater. Chem. A, 2018, vol. 6, no. 29, pp. 14330–14338.https://doi.org/10.1039/c8ta04619k

    Article  CAS  Google Scholar 

  137. Voropaeva, D., Novikova, S., Xu, T.W., and Yaroslavtsev, A., Polymer electrolytes for LIBs based on perfluorinated sulfocationic Nepem-117 membrane and aprotic solvents, J. Phys. Chem. B, 2019, vol. 123, no. 48, pp. 10217–10223.https://doi.org/10.1021/acs.jpcb.9b08555

    Article  CAS  PubMed  Google Scholar 

  138. Zyubina, T.S., Sanginov, E.A., Zyubin, A.S., Dobrovol’skii, Yu.A., Volokhov, V.M., Klyucharev, V.V., and Bukun, N.G., Polymeric electrolyte comprising a Nafion membrane plasticized by dimethyl sulfoxide and the transport specifics of alkali metal ions in it: quantum-chemical simulation, Russ. J. Inorg. Chem., 2020, vol. 65, no. 3, pp. 360–372.https://doi.org/10.1134/s0036023620030201

    Article  CAS  Google Scholar 

  139. Istomina, A.S., Yaroslavtseva, T.V., Reznitskikh, O.G., Kayumov, R.R., Shmygleva, L.V., Sanginov, E.A., Dobrovolsky, Y.A., and Bushkova, O.V., Li-Nafion membrane plasticised with ethylene carbonate/sulfolane: influence of mixing temperature on the physicochemical properties, Polymers, 2021, vol. 13, no. 7, paper 1150.https://doi.org/10.3390/polym13071150

  140. Sanginov, E.A., Borisevich, S.S., Kayumov, R.R., Istomina, A.S., Evshchik, E.Y., Reznitskikh, O.G., Yaroslavtseva, T.V., Melnikova, T.I., Dobrovolsky, Y.A., and Bushkova, O.V., Lithiated Nafion plasticised by a mixture of ethylene carbonate and sulfolane, Electrochim. Acta, 2021, vol. 373, paper 137914.https://doi.org/10.1016/j.electacta.2021.137914

  141. Golubenko, D.V., Pourcelly, G., and Yaroslavtsev, A.B., Permselectivity and ion-conductivity of grafted cation-exchange membranes based on UV-oxidized polymethylpenten and sulfonated polystyrene, Sep. Purif. Technol., 2018, vol. 207, pp. 329–335.https://doi.org/10.1016/j.seppur.2018.06.041

    Article  CAS  Google Scholar 

  142. Berezina, N.P., Kononenko, N.A., Sytcheva, A.A.R., Loza, N.V., Shkirskaya, S.A., Hegman, N., and Pungor, A., Perfluorinated nanocomposite membranes modified by polyaniline: electrotransport phenomena and morphology, Electrochim. Acta, 2009, vol. 54, no. 8, pp. 2342–2352.https://doi.org/10.1016/j.electacta.2008.10.048

    Article  CAS  Google Scholar 

  143. Porozhnyy, M., Huguet, P., Cretin, M., Safronova, E., and Nikonenko, V., Mathematical modeling of transport properties of proton-exchange membranes containing immobilized nanoparticles, Int. J. Hydrogen Energy, 2016, vol. 41, no. 34, pp. 15605–15614.https://doi.org/10.1016/j.ijhydene.2016.06.057

    Article  CAS  Google Scholar 

  144. Stenina, I.A. and Yaroslavtsev, A.B., Ionic mobility in ion-exchange membranes, Membranes, 2021, vol. 11, no. 3, paper 198.https://doi.org/10.3390/membranes11030198

  145. Porozhnyy, M.V., Shkirskaya, S.A., Butylskii, D.Y., Dotsenko, V.V., Safronova, E.Y., Yaroslavtsev, A.B., Deabate, S., Huguet, P., and Nikonenko, V., Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: effect of functionalization, Electrochim. Acta, 2021, vol. 370, paper 137689.https://doi.org/10.1016/j.electacta.2020.137689

  146. Quartarone, E. and Mustarelli, P., Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chem. Soc. Rev., 2011, vol. 40, no. 5, pp. 2525–2540.https://doi.org/10.1039/c0cs00081g

    Article  CAS  PubMed  Google Scholar 

  147. Cheng, X.L., Pan, J., Zhao, Y., Liao, M., and Peng, H.S., Gel polymer electrolytes for electrochemical energy storage, Adv. Energy Mater., 2018, vol. 8, no. 7, paper 1702184.https://doi.org/10.1002/aenm.201702184

  148. Wang, Y., Travas-Sejdic, J., and Steiner, R., Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery, Solid State Ionics, 2002, vol. 148, nos. 3–4, pp. 443–449.https://doi.org/10.1016/s0167-2738(02)00085-1

    Article  CAS  Google Scholar 

  149. Stenina, I., Golubenko, D., Nikonenko, V., and Yaroslavtsev, A., Selectivity of transport processes in ion-exchange membranes: relationship with the structure and methods for its improvement, Int. J. Mol. Sci., 2020, vol. 21, no. 15, paper 5517.https://doi.org/10.3390/ijms21155517

  150. Yu, X. and Manthiram, A., Ambient-temperature sodium–sulfur batteries with a sodiated Nafion membrane and a carbon nanofiber-activated carbon composite electrode, Adv. Energy Mater., 2015, vol. 5, no. 12, paper 1500350.https://doi.org/10.1002/aenm.201500350

  151. Bauer, I., Kohl, M., Althues, H., and Kaskel, S., Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes, Chem. Commun., 2014, vol. 50, no. 24, pp. 3208–3210.https://doi.org/10.1039/c4cc00161c

    Article  CAS  Google Scholar 

  152. Wenzel, S., Leichtweiss, T., Weber, D.A., Sann, J., Zeier, W.G., and Janek, J., Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium beta-alumina for protected sodium metal anodes and sodium all-solid-state batteries, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 41, pp. 28216–28224.https://doi.org/10.1021/acsami.6b10119

    Article  CAS  PubMed  Google Scholar 

  153. Ren, Y.X., Jiang, H.R., Zhao, T.S., Zeng, L., and Xiong, C., Remedies of capacity fading in room-temperature sodium–sulfur batteries, J. Power Sources, 2018, vol. 396, pp. 304–313.https://doi.org/10.1016/j.jpowsour.2018.06.056

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, S.A., Voropaeva, D.Y. & Yaroslavtsev, A.B. Trends in the Development of Room-Temperature Sodium–Sulfur Batteries. Inorg Mater 58, 333–348 (2022). https://doi.org/10.1134/S0020168522040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522040124

Keywords:

Navigation