Skip to main content
Log in

Calculational Evaluation of the Adsorption–Desorption Behavior of Pyrolysis Products in GaAsxP1 – x Metalorganic Vapor Phase Epitaxy

  • Published:
Inorganic Materials Aims and scope

Abstract—

Density functional theory calculations have been used to determine the adsorption and desorption potentials of pyrolysis products on the substrate in the GaAsxP1 – x/GaAs metalorganic vapor phase epitaxy process. The results have been used in kinetic Monte Carlo simulation of the behavior of the pyrolysis products on the growth surface, with allowance for adsorption, desorption, and diffusion. The simulation results agree well with experimental data. The proposed calculation algorithm can be used to study the adsorption–desorption behavior of materials in other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Crump, P., Dong, W., Grimshaw, M., Wang, J., Patterson, S., Wise, D., DeFranza, M., Elim, S., Zhang, S., Bougher, M., Patterson, J., Das, S., Bell, J., Farmer, J., DeVito, M., and Martinsen, R., 100-W+ diode laser bars show >71% power conversion from 790-nm to 1000-nm and have clear route to >85%, Proc. SPIE-Int. Soc. Opt. Eng., 2007, vol. 6456, paper 64560M.https://doi.org/10.1117/12.704496

  2. Wang, Y., Yang, Y., Qin, L., Wang, C., Yao, D., Liu, Y., and Wang, L., 808 nm high-power high-efficiency GaAsP/GaInP laser bars, Proc. SPIE–Int. Soc. Opt. Eng., 2008, vol. 7135, paper 71350N.https://doi.org/10.1117/12.803301

  3. Li, P., Jiang, K., Zhang, X., Tang, Q., Xia, W., Li, S., Ren, Z., and Xu, X., 20.8 W TM polarized GaAsP laser diodes of 808 nm wavelength, Proc. SPIE–Int. Soc. Opt. Eng., 2013, vol. 8605, paper 860510.https://doi.org/10.1117/12.2002983

  4. Bezotosnyi V.V., Vasil’eva V.V., Vinokurov D.A., Kapitonov V.A., Krokhin O.N., Leshko A.Yu., Lyutetskii A.V., Murashova A.V., Nalet T.A., Nikolaev D.N., Pikhtin N.A., Popov Yu.M., Slipchenko S.O., Stankevich A.L., Fetisova N.V., Shamakhov V.V., and Tarasov I.S., High-power laser diodes of wavelength 808 nm based on various types of asymmetric heterostructures with an ultrawide waveguide, Semiconductors, 2008, vol. 42, no. 3, pp. 350–353.

    Article  CAS  Google Scholar 

  5. Degtyareva N.S., Kondakov S.A., Mikaelyan G.T., Gorlachuk P.V., Ladugin M.A., Marmalyuk A.A., Ryaboshtan Yu.L., and Yarotskaya I.V., High-power cw laser bars of the 750–790-nm wavelength range, Kvantovaya Elektron. (Moscow), 2013, vol. 43, no. 6, pp. 509–511.

    Article  Google Scholar 

  6. Levy, M., Berk, Y., and Karni, Y., Effect of compressive and tensile strain on the performance of 808 nm QW high power laser diodes, Proc. SPIE–Int. Soc. Opt. Eng., 2006, vol. 6104, pp. 93–104.

  7. Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, Cambridge: Academic, 1999, p. 572.

    Google Scholar 

  8. Fukui, T. and Kobayashi, N., Vapor–solid distribution relation in MOCVD GaAsxP1 – x and InAsxP1 – x , J. Cryst. Growth, 1985, vol. 71, no. 1, pp. 9–11.

    Article  CAS  Google Scholar 

  9. Zhong, L., Ma, X., Wang, S., and Liu, S., 808 nm GaAsP/GaInP laser diode arrays grown by MOCVD using AsH3 and TBP, IEEE 2008 Int. Nano-Optoelectronics Workshop (i-Now), Tokyo, 2008, vol. 12, pp. 237–238.

  10. Chen, D., Cheng, G., Hicks, R.F., Noori, A.M., Hayashi, S.L., Goorsky, M.S., Kanjolia, R., and Odedra, R., Metalorganic vapor-phase epitaxy of III/V phosphides with tertiarybutylphosphine and tertiarybutylarsine, J. Cryst. Growth, 2004, vol. 270, pp. 322–328.

    Article  CAS  Google Scholar 

  11. Maksimov, A.D., Eistrikh-Geller, V.Yu., Marmalyuk, A.A., Ladugin, M.A., Bagaev, T.A., Gorlachuk, P.V., and Yarotskaya, I.V., A model for calculating the composition of GaAsxP1 – x solid solutions under metalorganic vapor phase epitaxy conditions, Inorg. Mater., 2017, vol. 53, no. 4, pp. 369–375.https://doi.org/10.1134/S0020168517040124

    Article  CAS  Google Scholar 

  12. Samuelson, L., Omling, P., and Grimmeiss, H.G., Alloying mechanisms in MOVPE GaAs1 – xPx , J. Cryst. Growth, 1983, vol. 61, pp. 425–426.

    Article  CAS  Google Scholar 

  13. Kangawa, Y., Akiyama, T., Ito, T., Shiraishi, K., and Nakayama, T., Surface stability and growth kinetics of compound semiconductors: an ab initio-based approach, Materials, 2013, vol. 6, pp. 3309–3360.

    Article  CAS  Google Scholar 

  14. Blinder, S.M., Density Functional Theory, chapter 14 of Introduction to Quantum Mechanics, Amsterdam: Elsevier, 2021, 2nd ed.

  15. Hasnip, P.J., Refson, K., Prober, M.I.J., Yates, J.R., Clark, S.J., and Pickard, C.J., Density functional theory in the solid state, Philos. Trans. R. Soc. A, 2014, vol. 372, paper 20130270.

  16. Andersen, M., Panosetti, C., and Reuter, K., A practical guide to surface kinetic Monte Carlo simulations, Front. Chem., 2019, vol. 7, pp. 202–223.

    Article  CAS  Google Scholar 

  17. Laidler, K.J., Chemical Kinetics, New York: Harper & Row, 1987, p. 272.

    Google Scholar 

  18. Nørskov, J.K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L.B., et al., Universality in heterogeneous catalysis, J. Catal., 2002, vol. 209, no. 2, pp. 275–278.

    Article  Google Scholar 

  19. Michaelides, A., Liu, Z.-P., Zhang, C.J., Alavi, A., King, D.A., and Hu, P., Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces, J. Am. Chem. Soc., 2003, vol. 125, pp. 3704–3705.

    Article  CAS  Google Scholar 

  20. Kühnel, T.D., Iannuzzi, M., Del Ben, M., Rybkin, V.V., and Seewald, P., CP2K: an electronic structure and molecular dynamics software package – quickstep: efficient and accurate electronic structure calculations, J. Chem. Phys., 2020, vol. 152, no. 19, paper 194103.

  21. Svetogorov, V.N., Akchurin, R.Kh., Marmalyuk, A.A., Ladugin, M.A., and Yarotskaya, I.V., Calculation of an elastically strained AlxGayIn1 – x yAs/InP quantum well heterostructure for efficient laser emitters, Ross. Tekhnol. Zh., 2018, vol. 6, no. 2, pp. 46–54.

    Google Scholar 

  22. Jordan, A.S. and Robertson, A., Copyrolysis of AsH3 and PH3 in the epitaxial growth of ternary and quaternary III–V alloys, J. Cryst. Growth, 1994, vol. 137, pp. 224–230.

    Article  CAS  Google Scholar 

  23. Kobayashi, Y. and Kobayashi, N., Chemical-bonding structure of InP surface in MOVPE studied by surface photo-absorption, J. Electron. Mater., 1996, vol. 25, pp. 691–624.

    Article  CAS  Google Scholar 

  24. Smeets, E.T.J.M. and Cox, A.M.W., Influence of alkyl substituents of Oms and operating pressure on the quality of InxGa1 – xAs/InP heterostructures grown by OMVPE, J. Cryst. Growth, 1986, vol. 77, nos. 1–3, pp. 347–353.

    Article  CAS  Google Scholar 

  25. Biefeld, R.M., The preparation of InAs1 – xSbx alloys and strained-layer superlattices by MOCVD, J. Cryst Growth, 1986, vol. 77, nos. 1–3, pp. 392–399.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Maksimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, A.D., Davydkin, M.A., Bagaev, T.A. et al. Calculational Evaluation of the Adsorption–Desorption Behavior of Pyrolysis Products in GaAsxP1 – x Metalorganic Vapor Phase Epitaxy. Inorg Mater 58, 425–432 (2022). https://doi.org/10.1134/S0020168522040112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522040112

Keywords:

Navigation