Skip to main content
Log in

Effect of Heat Treatment on the Structure and Optical Properties of Porous Anodic Titanium Oxide Films

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the effect of anodizing voltage on the optical properties and structure of anodic titanium oxide films before and after annealing. Annealing at temperatures in the range 400–550°C has been shown to cause crystallization of initially amorphous anodic titanium oxide in the anatase phase, accompanied by an increase in porosity, pore diameter, and the refractive index of cell walls and a decrease in film thickness and average nanotube center-to-center distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Roy, P., Berger, S., and Schmuki, P., TiO2 nanotubes: synthesis and applications, Angew. Chem., Int. Ed., 2011, vol. 50, no. 13, pp. 2904–2939.https://doi.org/10.1002/anie.201001374

    Article  CAS  Google Scholar 

  2. Hou, X., Aitola, K., and Lund, P.D., TiO2 nanotubes for dye-sensitized solar cells—a review, Energy Sci. Eng., 2021, vol. 9, no. 7, pp. 921–937.https://doi.org/10.1002/ese3.831

    Article  CAS  Google Scholar 

  3. Tsuchiya, H. and Schmuki, P., Less known facts and findings about TiO2 nanotubes, Nanoscale, 2020, vol. 12, no. 15, pp. 8119–8132.https://doi.org/10.1039/D0NR00367K

    Article  CAS  PubMed  Google Scholar 

  4. Nebol’sin, V.A., Spiridonov, B.A., Dunaev, A.I., and Bogdanovich, E.V., Preparation of nanoporous titanium oxide films by electrochemical anodic oxidation, Inorg. Mater., 2017, vol. 53, no. 6, pp. 595–601. https://doi.org/10.1134/S0020168517060139

    Article  Google Scholar 

  5. Regonini, D., Bowen, C.R., Jaroenworaluck, A., and Stevens, R., A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Mater. Sci. Eng., R, 2013, vol. 74, no. 12, pp. 377–406.https://doi.org/10.1016/j.mser.2013.10.001

    Article  Google Scholar 

  6. Syrek, K., Sennik-Kubiec, A., Rodríguez-López, J., Rutkowska, M., Żmudzki, P., Hnida-Gut, K.E., Grudzień, J., Chmielarz, L., and Sulka, G.D., Reactive and morphological trends on porous anodic TiO2 substrates obtained at different annealing temperatures, Int. J. Hydrogen Energy, 2020, vol. 45, no. 7, pp. 4376–4389.https://doi.org/10.1016/j.ijhydene.2019.11.213

    Article  CAS  Google Scholar 

  7. Jarosz, M., Syrek, K., Kapusta-Kołodziej, J., Mech, J., Małek, K., Hnida, K., Łojewski, T., Jaskula, M., and Sulka, G.D., Heat treatment effect on crystalline structure and photoelectrochemical properties of anodic TiO2 nanotube arrays formed in ethylene glycol and glycerol based electrolytes, J. Phys. Chem. C, 2015, vol. 119, no. 42, pp. 24182–24191.https://doi.org/10.1021/acs.jpcc.5b08403

    Article  CAS  Google Scholar 

  8. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A., A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, no. 14, pp. 2011–2075.https://doi.org/10.1016/j.solmat.2006.04.007

    Article  CAS  Google Scholar 

  9. Acevedo-Peña, P., Carrera-Crespo, J.E., González, F., and González, I., Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays, Electrochim. Acta, 2014, vol. 140, pp. 564–571.https://doi.org/10.1016/j.electacta.2014.06.056

    Article  CAS  Google Scholar 

  10. Albu, S.P., Tsuchiya, H., Fujimoto, S., and Schmuki, P., TiO2 nanotubes – annealing effects on detailed morphology and structure, Eur. J. Inorg. Chem., 2010, no. 27, pp. 4351–4356.https://doi.org/10.1002/ejic.201000608

  11. AlHoshan, M.S., BaQais, A.A., Al-Hazza, M.I., and Al-Mayouf, A.M., Heat treatment and electrochemical activation of titanium oxide nanotubes: the effect of hydrogen doping on electrochemical behavior, Electrochim. Acta, 2012, vol. 62, pp. 390–395.https://doi.org/10.1016/j.electacta.2011.12.048

    Article  CAS  Google Scholar 

  12. Jaroenworaluck, A., Regonini, D., Bowen, C.R., and Stevens, R., A microscopy study of the effect of heat treatment on the structure and properties of anodised TiO2 nanotubes, Appl. Surf. Sci., 2010, vol. 256, no. 9, pp. 2672–2679.https://doi.org/10.1016/j.apsusc.2009.09.078

    Article  CAS  Google Scholar 

  13. Mazare, A., Paramasivam, I., Schmidt-Stein, F., Lee, K., Demetrescu, I., and Schmuki, P., Flame annealing effects on self-organized TiO2 nanotubes, Electrochim. Acta, 2012, vol. 66, pp. 12–21.https://doi.org/10.1016/j.electacta.2012.01.001

    Article  CAS  Google Scholar 

  14. Xiong, J., Wang, X., Li, Y., and Hodgson, P.D., Interfacial chemistry and adhesion between titanium dioxide nanotube layers and titanium substrates, J. Phys. Chem. C, 2011, vol. 115, no. 11, pp. 4768–4772.https://doi.org/10.1021/jp111651d

    Article  CAS  Google Scholar 

  15. Sapoletova, N.A., Kushnir, S.E., and Napolskii, K.S., Effect of anodizing voltage and pore widening time on the effective refractive index of anodic titanium oxide, Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 2, pp. 154–157.https://doi.org/10.17586/2220-8054-2019-10-2-154-157

    Article  CAS  Google Scholar 

  16. Sadykov, A.I., Leontev, A.P., Kushnir, S.E., Lukashin, A.V., and Napolskii, K.S., Kinetics of the formation and dissolution of anodic aluminum oxide in electrolytes based on sulfuric and selenic acids, Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, pp. 258–265. https://doi.org/10.1134/S0036023621020182

    Article  CAS  Google Scholar 

  17. Choy, T.C., Effective Medium Theory: Principles and Applications, Oxford: Oxford University Press, 2016, 2nd ed.

    Google Scholar 

  18. Ermolaev, G.A., Kushnir, S.E., Sapoletova, N.A., and Napolskii, K.S., Titania photonic crystals with precise photonic band gap position via anodizing with voltage versus optical path length modulation, Nanomaterials, 2019, vol. 9, no. 4, p. 651.https://doi.org/10.3390/nano9040651

    Article  CAS  PubMed Central  Google Scholar 

  19. Sapoletova, N.A., Kushnir, S.E., and Napolskii, K.S., Anodic titanium oxide photonic crystals prepared by novel cyclic anodizing with voltage versus charge modulation, Electrochem. Commun., 2018, vol. 91, pp. 5–9.https://doi.org/10.1016/j.elecom.2018.04.018

    Article  CAS  Google Scholar 

  20. Sadykov, A.I., Kushnir, S.E., Sapoletova, N.A., Ivanov, V.K., and Napolskii, K.S., Anodic titania photonic crystals with high reflectance within photonic band gap via pore shape engineering, Scr. Mater., 2020, vol. 178, pp. 13–17.https://doi.org/10.1016/j.scriptamat.2019.10.044

    Article  CAS  Google Scholar 

  21. Sadykov, A.I., Kushnir, S.E., Sapoletova, N.A., and Napolskii, K.S., One-dimensional photonic crystals based on anodic titanium oxide with a high Q factor, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2020, vol. 14, no. 1, pp. 42–46.https://doi.org/10.1134/S1027451020010139

    Article  CAS  Google Scholar 

  22. Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, vol. 56, no. 10, pp. 978–982.https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  23. Ozin, G.A. and Arsenault, A., Nanochemistry: a Chemical Approach to Nanomaterials, London: Royal Society of Chemistry, 2015.

    Google Scholar 

  24. Kushnir, S.E. and Napolskii, K.S., Thickness-dependent iridescence of one-dimensional photonic crystals based on anodic alumina, Mater. Des., 2018, vol. 144, pp. 140–150.https://doi.org/10.1016/j.matdes.2018.02.012

    Article  CAS  Google Scholar 

  25. Singh, J., Optical Properties of Condensed Matter and Applications, Chichester: Wiley, 2006.

    Book  Google Scholar 

  26. Sadykov, A.I., Kushnir, S.E., Roslyakov, I.V., Baranchikov, A.E., and Napolskii, K.S., Selenic acid anodizing of aluminium for preparation of 1D photonic crystals, Electrochem. Commun., 2019, vol. 100, pp. 104–107.https://doi.org/10.1016/j.elecom.2019.01.027

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank T.B. Shatalova for performing thermal analysis of the samples.

We are grateful to the Future of the Planet and Global Environmental Change Interdisciplinary Science and Education School, Moscow State University.

In some of the experiments, we used scientific equipment purchased through the Development of the Moscow State University Program.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kushnir.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapoletova, N.A., Kushnir, S.E., Cherepanova, Y.M. et al. Effect of Heat Treatment on the Structure and Optical Properties of Porous Anodic Titanium Oxide Films. Inorg Mater 58, 40–47 (2022). https://doi.org/10.1134/S0020168522010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010101

Keywords:

Navigation