Skip to main content
Log in

Thermal Stability Limit of Thin Palladium(II) Oxide Films

  • Published:
Inorganic Materials Aims and scope

Abstract—

X-ray diffraction and scanning electron microscopy data demonstrate that the thermal stability limit of thin PdO films in an oxygen atmosphere rises from 1083 ± 5 to 1133 ± 5 K as the thickness of the starting Pd layers increases from ~10 to ~95 nm, respectively. Unlike the continuous starting metallic palladium layers, the Pd nanostructures resulting from complete thermal decomposition of thin PdO films consist of isolated hemispheric nanocrystallites having well-defined faceting. According to the X-ray diffraction results, the Pd crystallites have (111) and (100) preferential alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hyo-Joong Kim and Jong-Heun Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview, Sens. Actuators, B, 2014, vol. 192, pp. 607–627.

    Article  Google Scholar 

  2. Samoylov, A.M., Ryabtsev, S.V., Popov, V.N., and Badica, P., Palladium (II) oxide nanostructures as promising materials for gas sensors, Novel Nanomaterials: Synthesis and Applications, Kyzas, G., Ed., London: IntechOpen, 2018, pp. 211–229.

    Google Scholar 

  3. Rey, E., Kamal, M.R., Miles, R.B., and Royce, B.S.H., The semiconductivity and stability of palladium oxide, J. Mater. Sci., 1978, vol. 13, pp. 812–816.

    Article  CAS  Google Scholar 

  4. García-Serrano, O., Andraca-Adame, A., Baca-Arroyo, R., Peña-Sierra, R., and Romero-Paredes, G.R., Thermal oxidation of ultra thin palladium (Pd) foils at room conditions, Proc. 8th Int. Conf. on Electrical Engineering, Computing Science and Automatic Control (CCE), Merida City, 2011, pp. 456–460.

  5. Ryabtsev, S.V., Ievlev, V.M., Samoylov, A.M., Kuschev, S.B., and Soldatenko, S.A., Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection, Thin Solid Films, 2017, vol. 636, pp. 751–759.

    Article  CAS  Google Scholar 

  6. Chiang Yu-Ju and Pan Fu-Ming, PdO nanoflake thin films for CO gas sensing at low temperatures, J. Phys. Chem. C, 2013, vol. 117, pp. 15593–15601.

    Article  CAS  Google Scholar 

  7. Yangong Zheng, Qiao Qiao, Jing Wang, Xiaogan Li, and Jiawen Jian, Gas sensing behavior of palladium oxide for carbon monoxide at low working temperature, Sens. Actuators, B, 2015, vol. 212, pp. 256–263.

    Article  CAS  Google Scholar 

  8. Choudhury Sipra, Bettya, C.A., Bhattacharyyaa Kaustava, Saxenab Vibha, and Bhattacharya Debarati, Nanostructured PdO thin film from Langmuir–Blodgett precursor for room temperature H2 gas sensing, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 16997–17003.

    Article  Google Scholar 

  9. Ryabtsev, S.V., Shaposhnik, A.V., Samoylov, A.M., Sinelnikov, A.A., Soldatenko, S.A., Kushchev, S.B., and Ievlev, V.M., Thin films of palladium oxide for gas sensors, Dokl. Phys. Chem., 2016, vol. 470, no. 2, pp. 158–161.

    Article  CAS  Google Scholar 

  10. Ievlev, V.M., Ryabtsev, S.V., Shaposhnik, A.V., Samoylov, A.M., Kuschev, S.B., and Sinelnikov, A.A., Ultrathin films of palladium oxide for oxidizing gases detecting, Procedia Eng., 2016, vol. 168, pp. 1106–1109.

    Article  CAS  Google Scholar 

  11. Samoylov, A., Ryabtsev, S., Chuvenkova, O., Ivkov, S., Sharov, M., and Turishchev, S., Crystal structure and surface phase composition of palladium oxides thin films for gas sensors, SATF 2018: Science and Applications of Thin Films, Conference & Exhibition, Izmir: Izmir Inst. of Technology, pp. 43–56.

  12. Ievlev, V.M., Ryabtsev, S.V., Samoylov, A.M., Shaposhnik, A.V., Kuschev, S.B., and Sinelnikov, A.A., Thin and ultrathin films of palladium oxide for oxidizing gases detection, Sens. Actuators, B, 2018, vol. 255, no. 2, pp. 1335–1342.

    Article  CAS  Google Scholar 

  13. Kushchev, S.B., Ryabtsev, S.V., Soldatenko, S.A., Sinel’nikov, A.A., Dontsov, A.I., Maksimenko, A.A., and Turaeva, T.L., On the synthesis of PdO–RuO2 solid-solution thin films by thermal oxidation and investigation of their gas-sensing properties, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech., 2019, vol. 13, pp. 87–91.

    Article  Google Scholar 

  14. Yamazoe, N., Toward innovations of gas sensor technology, Sens. Actuators, B, 2005, vol. 108, pp. 2–14.

    Article  CAS  Google Scholar 

  15. Korotcenkov, G., Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications, vol. 1: Conventional Approaches, New York: Springer, 2013.

    Google Scholar 

  16. Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M., and Samoylov, A.M., Nanocrystalline tin dioxide: basics in relation with gas sensing phenomena: Part I. Physical and chemical properties and sensor signal formation, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1329–1347.

    Article  CAS  Google Scholar 

  17. Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M., and Samoylov, A.M., Nanocrystalline tin dioxide: basics in relation with gas sensing phenomena: Part II. Active centers and sensor behavior, Inorg. Mater., 2016, vol. 52, no. 13, pp. 1311–1338.

    Article  CAS  Google Scholar 

  18. Nekrasov, B.V., Osnovy obshchei khimii (Principles of General Chemistry), St. Petersburg: Lan’, 2003.

  19. Wiberg, E., Wiberg, N., and Holleman, A.F., Inorganic Chemistry, San Diego: Academic, 2001.

    Google Scholar 

  20. Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, Boston: Butterwoth-Heinemann, 2006.

    Google Scholar 

  21. Samoylov, A.M., Ivkov, S.A., Pelipenko, D.I., Sharov, M.K., Tsyganova, V.O., Agapov, B.L., Tutov, E.A., and Badica, P., Structural changes in palladium nanofilms during thermal oxidation, Inorg. Mater., 2020, vol. 56, no. 10, pp. 1020–1026.

    Article  CAS  Google Scholar 

  22. Samoylov, A.M., Pelipenko, D.I., and Kuralenko, N.S., Calculation of the nonstoichiometry region of nanocrystalline palladium(II) oxide films, Kondens. Sredy Mezhfaznye Granitsy, 2021, vol. 23, no. 1, pp. 62–72.

    Google Scholar 

  23. ASTM JCPDS–International Centre for Diffraction Data, Newtown Square: JCPDS–ICDD, 1987–2009.

  24. Swanson, H.E. and Tatge, E., National Bureau of Standards (U.S.), 1953, circ. 539, 1, p. 21, PDF card no. 27-1402.

  25. Grier, D. and McCarthy, G., PDF card no. 43-1024, Fargo: JCPDS–ICDD, 1991.

    Google Scholar 

  26. Ievlev, V.M., Kushchev, S.B., Sinel’nikov, A.A., Soldatenko, S.A., Ryabtsev, S.V., Bosykh, M.A., and Samoylov, A.M., Structure of heterosystems formed by a SnO2 film and island metal (Ag, Au, or Pd) Condensate, Inorg. Mater., 2016, vol. 52, no. 7, pp. 677–685.

    Article  CAS  Google Scholar 

  27. Emsley, J., The Elements, Oxford: Clarendon, 1998, 3rd ed.

    Google Scholar 

  28. Henry, C.R. and Becker, C., Nucleation, growth, and organization of metal nanoparticles on oxide surfaces, in Surface and Interface Science, New York: Wiley–VCH, 2014, vol. 4, pp. 815–862.

    Google Scholar 

  29. Revenant, C., Leroy, F., Lazzari, R., Renaud, G., and Henry, C.R., Quantitative analysis of grazing incidence small-angle X-ray scattering: Pd/MgO (001) growth, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, paper 035411.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the higher education institutions in 2020–2022, project no. FZGU-2020-0036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Samoylov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoylov, A.M., Pelipenko, D.I., Ivkov, S.A. et al. Thermal Stability Limit of Thin Palladium(II) Oxide Films. Inorg Mater 58, 48–55 (2022). https://doi.org/10.1134/S0020168522010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010095

Keywords:

Navigation